Open

IMMEDIATE COMMUNICATION

Molecular Psychiatry (2012) 17, 887 —905
© 2012 Macmillan Publishers Limited All rights reserved 1359-4184/12

www.nature.com/mp

Convergent functional genomics of schizophrenia: from
comprehensive understanding to genetic risk prediction

M Ayalew'>°, H Le-Niculescu™®, DF Levey', N Jain', B Changala’, SD Patel’, E Winiger', A Breier', A Shekhar', R Amdur®,
D Koller®, JI Nurnberger', A Corvin®, M Geyer®, MT Tsuang®, D Salomon’, NJ Schork’, AH Fanous®, MC O’Donovan® and

AB Niculescu'?

We have used a translational convergent functional genomics (CFG) approach to identify and prioritize genes involved in
schizophrenia, by gene-level integration of genome-wide association study data with other genetic and gene expression studies
in humans and animal models. Using this polyevidence scoring and pathway analyses, we identify top genes (DISC1, TCF4,
MBP, MOBP, NCAM1, NRCAM, NDUFV2, RAB18, as well as ADCYAP1, BDNF, CNR1, COMT, DRD2, DTNBP1, GAD1, GRIA1, GRIN2B,
HTR2A, NRG1, RELN, SNAP-25, TNIK), brain development, myelination, cell adhesion, glutamate receptor signaling, G-protein—
coupled receptor signaling and cAMP-mediated signaling as key to pathophysiology and as targets for therapeutic intervention.
Overall, the data are consistent with a model of disrupted connectivity in schizophrenia, resulting from the effects of
neurodevelopmental environmental stress on a background of genetic vulnerability. In addition, we show how the top
candidate genes identified by CFG can be used to generate a genetic risk prediction score (GRPS) to aid schizophrenia
diagnostics, with predictive ability in independent cohorts. The GRPS also differentiates classic age of onset schizophrenia from
early onset and late-onset disease. We also show, in three independent cohorts, two European American and one African
American, increasing overlap, reproducibility and consistency of findings from single-nucleotide polymorphisms to genes, then
genes prioritized by CFG, and ultimately at the level of biological pathways and mechanisms. Finally, we compared our top
candidate genes for schizophrenia from this analysis with top candidate genes for bipolar disorder and anxiety disorders from
previous CFG analyses conducted by us, as well as findings from the fields of autism and Alzheimer. Overall, our work maps the
genomic and biological landscape for schizophrenia, providing leads towards a better understanding of iliness, diagnostics and
therapeutics. It also reveals the significant genetic overlap with other major psychiatric disorder domains, suggesting the need

for improved nosology.

Molecular Psychiatry (2012) 17, 887—-905; doi:10.1038/mp.2012.37; published online 15 May 2012

Keywords: biomarkers; convergent functional genomics; genetic risk prediction; pathways; schizophrenia

INTRODUCTION

‘Things fall apart; the center cannot hold’
— WB Yeats, The Second Coming

Schizophrenia is a devastating disorder affecting ~1% of the
population. While there is clear evidence for roles for both genes
and environment, a comprehensive biological understanding of
the disorder has been elusive so far. Most notably, there has been
until recently a lack of concerted integration across functional and
genetic studies, and across human and animal model studies,
resulting in missed opportunities to see the whole picture.

As part of a translational convergent functional genomics (CFG)
approach, developed by us over the last decade,'™ and expanding
upon our earlier work on identifying genes for schizophrenia® and
biomarkers for psychosis,” we set out to comprehensively identify
candidate genes, pathways and mechanisms for schizophrenia,

integrating the available evidence in the field to date. We have
used data from published genome-wide association studies
(GWAS) data sets for schizophrenia.®® We integrated those data
with gene expression data—human postmortem brain gene
expression data, human induced pluripotent stem cell-derived
neuronal cells'® and human blood gene expression data’
published by others and us, as well as with relevant animal model
brain and blood gene expression data generated by our group®
and others. In addition, we have integrated as part of this compre-
hensive approach other genetic data—human genetic data
(linkage, copy number variant (CNV) or association) for schizo-
phrenia, as well as relevant mouse model genetic evidence
(Figure 1, Table 1 and Figure 2). Animal model data provide sensi-
tivity of detection, and human data provide specificity for the
illness. Together, they help to identify and prioritize candidate
genes for the illness, using a polyevidence CFG score, resulting in
essence in a de facto field-wide integration putting together the
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Figure 1. Convergent functional genomics. GWAS, genome-wide association study; ISC, International Schizophrenia Consortium;

SNP, single-nucleotide polymorphism.

best available evidence to date. Once that is done, biological
pathway analyses can be conducted and mechanistic models can
be constructed (Figure 3).

An obvious next step is developing a way of applying that
knowledge to genetic testing of individuals to determine risk for
the disorder. On the basis of our comprehensive identification of
top candidate genes described in this paper, we have chosen the
nominally significant single-nucleotide polymorphisms (SNPs)
inside those genes in the GWAS data set used for discovery
(International Schizophrenia Consortium, ISC), and assembled a
genetic risk prediction (GRP) panel out of those SNPs. We then
developed a genetic risk prediction score (GRPS) for schizophrenia
based on the presence or absence of the alleles of the SNPs
associated with the illness in ISC, and tested the GRPS in
independent cohorts (GAIN European Americans (EA), GAIN
African Americans (AA), nonGAIN EA, nonGAIN AA)° for which
we had both genotypic and clinical data available, comparing the
schizophrenia subjects to normal controls. Our results show
that a panel of SNPs in top genes identified and prioritized
by CFG analysis can differentiate between schizophrenia subjects
and controls at a population level, although at an individual
level the margin is minimal. The latter point suggests that,
like for bipolar disorder,"" the contextual cumulative combina-
torics of common variants and environment'? plays a major role in
risk for illness. Moreover, the genetic risk component identified
by us seems to be stronger for classic age at onset schizophrenia
than for early onset and late-onset schizophrenia, suggesting
that those subtypes may be different, either in having a
larger environmental component or having a different genetic
component.

We have also looked at genetic heterogeneity, overlap and
reproducibility between independent GWAS for schizophrenia. We
show that the overlap is minimal at a nominal P-value SNP level,
but increases dramatically at a gene level, then at a CFG-prioritized
gene level and finally at a pathway level. CFG provides a fit-to-
disease prioritization of genes that leads to generalizability in
independent cohorts, and counterbalances the fit-to-cohort
prioritization inherent in classic SNP level genetic-only approaches,
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which have been plagued by poor reproducibility across cohorts.
Finally, we have looked at overlap with candidate genes for other
psychiatric disorders (bipolar disorder, anxiety disorders), as well as
with other disorders affecting cognition (autism, Alzheimer disease
(AD)), and provide evidence for shared genes.

Overall, this work sheds comprehensive light on the genetic
architecture and pathophysiology of schizophrenia, provides
mechanistic targets for therapeutic intervention and has implica-
tions for genetic testing to assess risk for illness before the illness
manifests itself clinically.

MATERIALS AND METHODS
Genome-wide association studies data for schizophrenia

The GWAS data from the ISC was used for the discovery CFG work.? This
cohort consists of EA subjects (3322 schizophrenics and 3587 controls).
SNPs with a nominal allelic P-value <0.05 were selected for our analysis.
No Bonferroni correction was performed.

Four independent cohorts,” two EA (GAIN EA 1170 schizophrenics and
1378 controls; nonGAIN EA 1149 schizophrenics and 1347 controls) and
two AA (GAIN AA 915 schizophrenics and 949 controls; nonGAIN AA 78
schizophrenics and 20 controls), were used for testing the results of the
discovery analyses. The GWAS GAIN and nonGAIN data used for analyses
described in this paper were obtained from the database of Genotype and
Phenotype (dbGaP) found at www.ncbi.nlm.nih.gov.

The software package PLINK (http://pngu.mgh.harvard.edu/~purcell)
was used to extract individual genotype information for each subject from
the GAIN GWAS data files. We analyzed EA, and separately, AA, schi-
zophrenia subjects and controls.

Gene identification

To identify the genes that correspond to the selected SNPs, the lists of
SNPs from the GWAS were uploaded to NetAFFX (Affymetrix, Santa Clara,
CA, USA; http://www.affymetrix.com/analysis/index.affx). We used the
Netaffx na32 Genotyping Annotation build. In the cases where a SNP
mapped to multiple genes, we selected all the genes. SNPs for which no
gene was identified were not included in our subsequent analyses.
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Figure 2. Top candidate genes for schizophrenia. CFG, convergent
functional genomics; GWAS, genome-wide association study; ISC,
International Schizophrenia Consortium.
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CONVERGENT FUNCTIONAL GENOMICS ANALYSES
Databases

We have established in our laboratory (Laboratory of Neuro-
phenomics, Indiana University School of Medicine; www.neuro-
phenomics.info) manually curated databases of all the human
gene expression (postmortem brain, blood, cell cultures), human
genetic (association, CNVs, linkage) and animal model gene
expression and genetic studies published to date on psychiatric
disorders.'” Only the findings deemed significant in the primary
publication, by the study authors, using their particular experi-
mental design and thresholds, are included in our databases. Our
databases include only primary literature data, and do not include
review papers or other secondary data integration analyses, to
avoid redundancy and circularity. These large and constantly
updated databases have been used in our CFG cross-validation
and prioritization (Figure 1).

Human postmortem brain gene expression evidence

Information about genes was obtained and imported in our
databases by searching the primary literature with PubMed
(http://ncbi.nlm.nih.gov/PubMed), using various combinations of
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Figure 3. Schizophrenia as a disease of disconnection. (a) Biology of schizophrenia, (b) gene—environment interplay.
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keywords (for this work: schizophrenia, psychosis, human, brain,
postmortem). Convergence was deemed to occur for a gene if
there were published human postmortem brain data showing
changes in expression of that gene in tissue from patients with
schizophrenia.

Human blood and other peripheral tissue gene expression data

For human blood gene expression evidence, we have used
previously generated data from our group,” as well as published
data from the literature. We also included recent data generated
from induced pluripotent stem cell-derived neurons.

Human genetic evidence (association, CNVs, linkage)

To designate convergence for a particular gene, the gene had to
have independent published evidence of association, CNVs or
linkage for schizophrenia. We sought to avoid using any
association studies that included subjects that were also included
in the ISC or GAIN GWAS. For CNVs, all the known genes on a CNV
were taken. For linkage, the location of each gene was obtained
through GeneCards (http://www.genecards.org), and the sex-
averaged cM location of the start of the gene was then obtained
through http://compgen.rutgers.edu/old/map-interpolator/. For
linkage convergence, per our previously published criteria,” the
start of the gene had to map within 5cM of the location of a
marker linked to the disorder.

Animal model brain and blood gene expression evidence

For animal model brain and blood gene expression evidence, we
have used our own comprehensive pharmacogenomic mouse
model (phencyclidine and clozapine) data sets® as well as
published reports from the literature curated in our databases.

Animal model genetic evidence (transgenic)

To search for mouse genetic evidence (transgenic) for our
candidate genes, we utilized PubMed as well as the Mouse
Genome Informatics (http://www.informatics.jax.org; Jackson La-
boratory, Bar Harbor, ME, USA) database, and used the search
‘Genes and Markers’ form to find transgenics for categories
‘Schizophrenia’ as well as ‘abnormal nervous system physiology’
(subcategory ‘abnormal sensorimotor gating’).

Convergent functional genomics analysis scoring

We used a nominal P-value threshold for including genes from the
ISC GWAS in the CFG analysis: having a SNP with P<0.05. All six
cross-validating lines of evidence (other human data, animal model
data) were weighted equally, receiving a maximum of 1 point each
(for human genetic evidence: 0.5 points if it is linkage, 0.75 if it is
from CNVs, 1 point if it is association). Thus, the maximum possible
CFG score for each gene is 6. We have capped each line of
evidence at 1 point, regardless of how many different studies
support that line of evidence, to avoid potential ‘popularity’ biases,
where some genes are more studied than others.

The more lines of evidence, that is, the more times a gene
shows up as a positive finding across independent studies,
platforms, methodologies and species, the higher its CFG score
(Figure 1). This is similar conceptually to the Google PageRank
algorithm, in which the more links to a page, the higher it comes
up on the search prioritization list.'*> Human and animal model
data, genetic and gene expression were integrated and tabulated,
resulting in a polyevidence CFG score. It has not escaped our
attention that other ways of weighing the lines of evidence may
give slightly different results in terms of prioritization, if not in
terms of the list of genes per se. Nevertheless, we feel this simple
scoring system provides a good separation of genes, with
sensitivity provided by animal model data and specificity provided
by human data.

Molecular Psychiatry (2012), 887 —905

Pathway analyses

IPA 9.0. (Ingenuity Systems, Redwood City, CA, USA) was used to
analyze the biological roles, including top canonical pathways, of
the candidate genes resulting from our work (Table 2 and
Supplementary Table S5), as well as used to identify genes in our
data sets that are the target of existing drugs (Supplementary
Table S2).

Intra-pathway epistasis testing

As an example,'" the ISC GWAS data were used to test for epistatic
interactions among the best P-value SNPs in genes from our data
set present in a top canonical biological pathway identified by
Ingenuity pathway analysis (Supplementary Table S4). SNP x SNP
allelic epistasis was tested for each distinct pair of SNPs between
genes, using the PLINK software package.

Genetic risk prediction panel and scoring

As we had previously done for bipolar disorder,'" we developed a
polygenic GRPS for schizophrenia based on the presence or
absence of the alleles of the SNPs associated with illness, and
tested the GRPS in independent cohorts for which we had both
genotypic and clinical data available, comparing the schizophrenia
subjects to normal controls. We tested two panels: a smaller one
(GRPS-42) containing the single best P-value SNP in ISC in each
of the top CFG prioritized genes (n=42), and a larger one
(GRPS-542), containing all the nominally significant SNPs (n = 542)
in ISC in the top CFG prioritized genes (n=42; Tables 3, 4,
Supplementary Table S3, and Figure 4).

Of note, our SNP panels and choice of affected alleles were
based solely on analysis of the ISC GWAS, which is our discovery
cohort, completely independently from the test cohorts. Each SNP
has two alleles (represented by base letters at that position).
One of them is associated with the illness (affected), the other
not (non-affected), based on the odds ratios from the discovery
ISC GWAS. We assigned the affected allele a score of 1 and the
non-affected allele a score of 0. A two-dimensional matrix of

Table 2. Ingenuity pathway analyses of top candidate genes

Top canonical pathways CFG >3 P-value Ratio

ISC (n=186 genes)
Glutamate receptor signaling 9.25E-13  12/69 (0.174)
G-protein—coupled receptor signaling 9.33E—13 27/530 (0.051)
CREB signaling in neurons 1.76E—12 17/202 (0.084)
cAMP-mediated signaling 3.55E—11 17/219 (0.078)
Neuropathic pain signaling in dorsal  3.64E—11 13/112 (0.116)
horn neurons

GAIN EA (n=173 genes)
Glutamate receptor signaling 457E—-16  14/69 (0.203)
CREB signaling in neurons 472E—14 18/202 (0.089)
G-protein—coupled receptor signaling  2E—13  27/530 (0.051)
cAMP-mediated signaling 1.2E—-12 18/219 (0.082)
Synaptic long-term potentiation 1.58E—12 14/114 (0.123)

GAIN AA (n=201 genes)
cAMP-mediated signaling 7.6E-17  23/219 (0.105)
Glutamate receptor signaling 1.09E—-16  15/69 (0.217)
Synaptic long-term potentiation 2.24E—15 17/114 (0.149)
G-Protein—coupled receptor signaling 2.43E—14 30/530 (0.057)
CREB signaling in neurons 4.52E—14 19/202 (0.094)

Abbreviations: AA, African American; CFG, convergent functional

genomics; EA, European American; ISC, International Schizophrenia

Consortium.

Discovery in ISC and reproducibility in two independent cohorts, GAIN EA

and GAIN AA.
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subjects by GRP panel alleles is generated, with the cells
populated by 0 or 1. A SNP in a particular individual subject can
have any permutation of 1 and 0 (1 and 1, 0 and 1, 0 and 0). By

Table 3. GRPS-42: non-differentiation between schizophrenics and
controls in independent cohorts using a panel composed of the single
best SNP from ISC in each of the top candidate genes (42 SNPs, in 42
genes)

Description of panel GAIN EA GAIN AA

P=0.10308, 39 out P =0.13567, 37 out
of the 42 I1SC SNPs
were present in

GAIN AA

Single best P-value
SNPs in each of the top  of the 42 ISC SNPs
42 candidate genes were present in
from ISC GWAS, n=42 GAIN EA

Abbreviations: AA, African American; EA, European American; GRPS,
genetic risk prediction score; GWAS, genome-wide association study;
ISC, International Schizophrenia Consortium; SNP, single-nucleotide
polymorphism.

Table 4. GRPS-542: differentiation between schizophrenics and
controls in four independent cohorts using a panel composed of all
the nominally significant SNPs from ISC in the top candidate genes
(542 SNPs in 42 genes)

GAIN EA GAIN AA

P =0.03213, 527 SNPs in 41
genes were present in GAIN EA

P =0.00847, 516 SNPs in 42
genes were present in GAIN AA

NonGAIN EA
P =0.00664, 537 SNPs in 42
genes were present in
nonGAIN EA

NonGAIN AA
P =0.03829, 537 SNPs in 42
genes were present in
nonGAIN AA

Abbreviations: AA, African American; EA, European American; GRPS,
genetic risk prediction score; ISC, International Schizophrenia Consortium;
SNP, single-nucleotide polymorphism.

a GAIN EA
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Figure 4.
risk prediction score.
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adding these numbers, the minimum score for a SNP in an
individual subject is 0, and the maximum score is 2. By adding the
scores for all the alleles in the panel, averaging that, and
multiplying by 100, we generate for each subject an average
score corresponding to a genetic loading for disease, which we
call Genetic Risk Predictive Score (GRPS).

The software package PLINK (http://pngu.mgh.harvard.edu/
~purcell) was used to extract individual genotype information
for each subject from the GAIN and nonGAIN GWAS data files.
We analyzed separately EA and AA schizophrenia subjects and
controls, to examine any potential ethnicity variability (Tables 3
and 4, and Supplementary Table S3). To test for significance, a
one-tailed t-test was performed between the schizophrenia
subjects and the control subjects, looking at differences in GRPS.

RESULTS

Top candidate genes

To minimize false negatives, we initially cast a wide net, using as a
filter a minimal requirement for a gene to have both some GWAS
evidence and some additional independent evidence. We thus
generated an initial list of 3194 unique genes with at least a SNP at
P<0.05 in the discovery GWAS analyzed (15C),2 that also had some
additional evidence (human or animal model data), implicating
them in schizophrenia (CFG score >1; Table 5). This suggests,
using these minimal thresholds and requirements, that the
repertoire of genes potentially involved directly or indirectly in
cognitive processes and schizophrenia may be quite large, similar
to what we have previously seen for bipolar disorder."’

To minimize false positives, we then used the CFG analysis
integrating multiple lines of evidence to further prioritize this list
of genes, and focused our subsequent analyses on only the top
CFG scoring candidate genes. Overall, 186 genes had a CFG score
of 3 and above (>50% of maximum possible score of 6), and 42
had a CFG score of 4 and above (Tables 1 and 5, and Figure 2).

Our top findings from ISC (Table 1) were over-represented in
two independent schizophrenia GWAS cohorts, the GAIN EA and
GAIN AA. In total, 37 of the top 42 genes identified by our
approach (88.1%) had at least a SNP with a P-value of <0.05 in
those independent cohorts, an estimated twofold enrichment

GAIN AA

p=0.00847

GRPS
w
=
0

Control (n=949) Schizophrenia (n=915)

doy0. NonGAIN AA

51.5 4
p=0.03829
51.0 4

50.5 1

GRPS

50.0 4
49.5 4

49.0 4

T 1

Control (n=20) Schizophrenia (n=78)

48.5

Genetic risk prediction of schizophrenia in four independent cohorts. AA, African American; EA, European American; GRPS, genetic
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Table 5. Reproducibility between independent GWAS
ISC vs ISC vs GAIN EA vs ISC vs. GAIN-EA vs.

Numbers and overlap across studies ISC GAIN EA GAIN AA GAIN EA GAIN AA GAIN AA GAIN-AA (% of ISC)
SNPs P<0.05 45972 42336 57118 2649 2986 2839 163 (0.4%)
Genes 10180 9002 11260 6470 7583 6807 5518 (54.2%)
Genes CFG >1 3194 2913 3524 2243 2564 2384 2012 (63.0%)
Genes CFG >3 186 173 201 147 160 153 134 (72.0%)
Genes CFG >4 42 41 45 37 37 38 35 (83.3%)
Pathways for genes with CFG >1 217 210 205 194 188 180 176 (81.1%)
Pathways for genes with CFG >3 79 85 108 72 76 81 72 (91.1%)
Pathways for genes with CFG >4 34 50 75 33 34 48 33 (97.1%)

Abbreviations: AA, African American; CFG, convergent functional genomics; EA, European American; GWAS, genome-wide association study; ISC, International
Schizophrenia Consortium; SNP, single-nucleotide polymorphism.
Increasing consistency and overlap observed from nominally significant SNPs (0.4%) to genes, then to CFG prioritized genes, and finally to pathways of CFG

prioritized genes (97.1%).

over what would be expected by chance alone at a genetic level
(as there were 9002 genes at P<0.05 in the GAIN-EA GWAS, and
the number of genes in the human genome is estimated at
20500, the enrichment factor provided by our approach is
(37/42)/(9002/20500) ~2). Of note, there was no correlation
between CFG prioritization and gene size, thus excluding a
gene-size effect for the observed enrichment (Supplementary
Figure S1).

Candidate blood biomarkers

Of the top candidate genes from Table 1 (see also Figure 2), 15 out
of 42 have prior human blood evidence for change in schizo-
phrenia, implicating them as potential blood biomarkers. The
additional evidence provided by GWAS data suggests a genetic
rather than purely environmental (medications, stress) basis for
their alteration in disease, and their potential utility as trait rather
than purely state markers.

Biological pathways

Pathway analyses were carried out on the top genes (Table 2),
and on all the candidate genes (Supplementary Table S5).
Notably, glutamate receptor signaling, G-protein—coupled recep-
tor signaling and cAMP-mediated signaling were the top
canonical pathways over-represented in schizophrenia, which
may be informative for new drug discovery efforts by pharma-
ceutical companies.

Genetic risk prediction

Once the genes involved in a disorder are identified, and
prioritized for likelihood of involvement, then an obvious next
step is developing a way of applying that knowledge to genetic
testing of individuals to determine risk for the disorder. Based on
our identification of top candidate genes described above using
CFG, we pursued a polygenic panel approach, with digitized
binary scoring for presence or absence, similar to the one we have
devised and used in the past for biomarkers testing® and for
genetic testing in bipolar disorder."" Somewhat similar ap-
proaches but without CFG prioritization, attempted by other
groups, have been either unsuccessful'® or have required very
large panels of markers2'®

We first chose the single best P-value SNPs in each of our top
CFG prioritized genes (n=42) in the ISC GWAS data set used for
discovery, and assembled a GRP panel out of those SNPs (Table 3).
We then developed a GRPS for schizophrenia based on the
presence or absence of the alleles of the SNPs associated with the
iliness, and tested the GRPS in independent cohorts (GAIN EA and
GAIN AA), comparing the schizophrenia subjects to normal
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controls (Table 3). The results were not significant. We concluded
that genetic heterogeneity at a SNP level is a possible explanation
for these negative results. We then sought to see if we get better
separation with a larger panel, containing all the nominally
significant SNPs (n =542) in the top CFG prioritized genes in I1SC
(n=42), on the premise that a larger panel may reduce the
heterogeneity effects, as different SNPs might be more strongly
associated with illness in different cohorts. We found that our
larger panel of SNPs was indeed able to significantly distinguish
schizophrenics from controls in both GAIN EA and GAIN AA, two
independent cohorts of different ethnicities. To verify this
unexpectedly strong result, we further tested our panel in two
other independent cohorts, nonGAIN EA and nonGAIN AA, and
obtained similarly significant results (Table 4 and Figure 4).

We also looked at whether our GRPS score distinguishes classic
age of onset schizophrenia (defined by us as ages 15 to 30 years)
from early onset (before 15 years) and late-onset (after 30 years)
illness. Our results show that classic age of onset schizophrenia
has a significantly higher GRPS than early or late-onset schizo-
phrenia, in three out of the four independent cohorts of two
different ethnicities (Figure 5).

Finally, as we had done previously for bipolar disorder,"" we
developed a prototype of how the GRPS score could be used in
testing individuals to establish their category of risk for schizo-
phrenia (Figure 6). The current iteration of the test, using the panel
of 542 SNPs, seems to be able to distinguish in independent
cohorts who is at lower risk for classic age of onset schizophrenia
in two out of three EA subjects, and who is at higher risk for classic
age of onset schizophrenia in three out of four AA subjects.

Overlap among studies

We examined the overlap at a nominally significant (P<0.05) SNP
level between ISC, GAIN EA and GAIN AA, and found that a
minority of these SNPs (0.4%) overlap (Table 5 and Figure 7). We
then examined the overlap at a gene level, then CFG prioritized
genes level and finally biological pathways level, and found
increasing evidence of commonality and reproducibility of find-
ings across studies.

DISCUSSION

Our CFG approach helped prioritize genes, such as DISC1 and
MBP, with weaker evidence in the GWAS data but with strong
independent evidence in terms of gene expression studies and
other prior human or animal genetic work. Conversely, some of
the top findings from GWAS, such as ZNF804A, have fewer
different independent lines of evidence, and thus received a lower
CFG prioritization score in our analysis (Supplementary Informa-
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tion-Table S1), although ZNF804A is clearly involved in schizo-
phrenia-related cognitive processes.'”” While we cannot exclude
that more recently discovered genes have had less hypothesis-
driven work done and thus might score lower on CFG, it is
to be noted that the CFG approach integrates predominantly
non-hypothesis driven, discovery-type data sets, such as gene
expression, GWAS, CNV, linkage and quantitative traits loci. We
also cap each line of evidence from an experimental approach
(Figure 1) at a maximum score of 1, to minimize any ‘popularity’
bias, whereas multiple studies of the same kind are conducted on
better-established genes. In the end, it is gene-level reproduci-
bility across multiple approaches and platforms that is built into
the approach and gets prioritized most by CFG scoring during the
discovery process. Our top results subsequently show good
reproducibility and predictive ability in independent cohort
testing, the litmus test for any such work.

At the very top of our list of candidate genes for schizophrenia,
with a CFG score of 5, we have four genes: DISC1, TCF4, MBP and
HSPA1B. An additional five genes have a CFG score of 4.5: MOBP,
NRCAM, NCAM1, NDUFV2 and RAB18.

DISC1 (Disrupted-in Schizophrenia 1), encodes a scaffold
protein that has an impact on neuronal development and
function,'®2° including neuronal connectivity.?' DISC1 has been
identified as a susceptibility gene for major mental disorders by
multiple studies.?>™2* DISC1 isoforms are upregulated in expres-
sion in blood cells in schizophrenia, thus serving as a potential
peripheral biomarker as well.*>?® Developmental stress interacts
with DISC1 expression to produce neuropsychiatric phenotypes in
mice.?” Notably, its interacting partners PDE4B,?® TNIK,%° FEZ1
(ref. 30) and DIXDC1 (ref. 31) are also present on our list of
prioritized candidate genes, with CFG scores of 4, 4, 3.5 and 2.5,
respectively (Table 1 and Supplementary Table S1).

TCF4 (transcription factor 4) encodes a basic helix-turn-helix
transcription factor, expressed in immune system as well as
neuronal cells. It is required for the differentiation of subsets of
neurons in the developing brain. There are multiple alternatively
spliced transcripts that encode different proteins, providing for
biological diversity and heterogeneity. Defects in this gene are a
cause of Pitt-Hopkins syndrome, characterized by mental retarda-
tion with or without associated facial dysmorphisms and inter-
mittent hyperventilation. TCF4 has additional genetic evidence
for association with schizophrenia-relevant phenotypes.3*™° It is

© 2012 Macmillan Publishers Limited
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changed in expression in postmortem brain,*® induced pluripotent
stem cell-derived neurons'® and blood from schizophrenia
patients.” Notably, it is a candidate blood biomarker for level of
delusional symptoms (decreased in high delusional states) based
on our previous work.

MBP (myelin basic protein) is a major constituent of the myelin
sheath of oligodendrocytes and Schwann cells in the nervous
system. MBP-related transcripts are also present in the bone
marrow and the immune system. MBP has additional genetic
evidence for association with schizophrenia.®’ It is decreased in
expression in postmortem brain®® and blood*® from schizophrenia
patients. MBP is also changed in expression in the brain and blood
of a pharmacogenomics mouse model of schizophrenia, based on
our previous work.® It was also decreased in expression in a stress-
reactive genetic mouse model of bipolar disorder,*® and treatment
with the omega-3 fatty acid docosahexaenoic acid led to an
increase in expression. Notably, MBP is a candidate blood
biomarker for level of mood symptoms (increased in high mood
states in bipolar subjects), based on our previous work.” Overall,
the data indicate that MBP and other myelin-related genes*'*?
may be involved in the effects of stress on psychosis and mood.
Demyelinating disorders such as multiple sclerosis tend to be
precipitated and exacerbated by stress, and have co-morbid
psychiatric symptoms.** Of note, other myelin-related genes are
also present on our list of prioritized candidate genes: MOBP and
MOG, with CFG scores of 4.5 and 3, respectively (Table 1 and
Supplementary Table S1).

HSPA1B (heat-shock 70-kDa protein 1B), a chaperone involved
in stress response, stabilizes existing proteins against aggregation
and mediates the folding of newly translated proteins.
HSPA1B has additional genetic evidence for association with
schizophrenia.* It is changed in expression in postmortem
brain® and induced pluripotent stem cell-derived neurons'® from
schizophrenia patients. HSPA1B is also increased in expression in
the brain and blood of a pharmacogenomics mouse model of
schizophrenia, based on our previous work® It was also co-
directionally changed in the brain and blood in a phramaco-
genomic mouse model of anxiety disorders, we have recently
described,*® as well as in a stress-reactive genetic mouse model.*
Treatment with the omega-3 fatty acid docosahexaenoic acid
reversed the increase in expression of HSPATB in this stress-
reactive genetic mouse model.*” Another closely related molecule,
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Figure 6. Prototype of how genetic risk prediction score (GRPS) testing could be used at an individual rather than population level, to aid
diagnostic and personalized medicine approaches. We used the average values and standard deviation values for GRPS from the GAIN
samples from each ethnicity (European American (EA) and African American (AA)) as thresholds for predictive testing in the independent
nonGAIN EA and nonGAIN AA cohorts. The average GRPS score for schizophrenics in the GAIN cohort is used as a cut-off for schizophrenics in
the test cohort (that is, being above that threshold), and the average GRPS score for controls in the GAIN cohort is used as a cut-off for
controls in the test nonGAIN cohort (that is, being below that threshold). The subjects who are in between these two thresholds are called
undetermined. Furthermore, to stratify risk, we categorized subjects into risk categories (in red, increased risk; in blue, decreased risk):
Category 1 if they fall within one standard deviation above the schizophrenics’ threshold, and category —1 if they fall within one standard
deviation below the controls threshold. Category 2 and —2, subjects are between one and two standard deviations from the thresholds,
category 3 and —3, subjects are between two and three standard deviations, and category 4 and —4, subjects are those who fall beyond three
standard deviations of the thresholds. The positive predictive value (PPV) of the tests increases in the higher categories, and the test is
somewhat better at distinguishing controls in EA (that is, in a practical application, individuals that are lower risk of developing the illness),
and schizophrenics in AA (that is, in a practical application, individuals that are higher risk of developing the illness).

HSPATA (heat-shock 70-kDa protein 1A), is also present on our list Another top candidate gene is CNR1 (cannabinoid receptor 1,
of prioritized candidate genes, with a CFG score of 3.5 brain). CNR1 is a member of the guanine-nucleotide-binding
(Supplementary Table S1). Heat-shock proteins may be involved protein (G-protein) coupled receptor family, which inhibits
in the biological and clinical overlap and interdependence adenylate cyclase activity in a dose-dependent manner. CNR1 has

between response to stress, anxiety and psychosis. additional genetic evidence for association with schizophrenia.>®*'

NRCAM (neuronal cell adhesion molecule) encodes a It is decreased in expression in postmortem brain from schizo-
neuronal cell adhesion molecule. This ankyrin-binding protein phrenics.>? The other main cannabinoid receptor, CNR2 (cannabi-
is involved in neuron—-neuron adhesion and promotes direc- noid receptor 2), is among our top candidate genes too

tional signaling during axonal cone growth. NRCAM is also (Supplementary Table S1), and is decreased in expression in
expressed in non-neural tissues and may have a general role in postmortem brain from schizophrenics as well. These data support
cell-cell communication via signaling from its intracellular a role for the cannabinoid system in schizophrenia, perhaps

domain to the actin cytoskeleton during directional cell through a deficiency of the endogenous cannabinoid signaling that
migration. It is decreased in expression in postmortem brain*® leads to vulnerability to psychotogenic stress,>> and is accompa-
and peripherally in serum*® from schizophrenia patients. nied by increased compensatory exogenous cannabinoid con-
NRCAM is also changed in expression in the brain of a sumption that may have additional deleterious consequences.”*

pharmacogenomics mouse model of schizophrenia, based on A number of glutamate receptor genes are present among our

our previous work.® It was also increased in the amygdala in a top candidate genes for schizophrenia (GRIA1, GRIA4, GRIN2B and
stress-reactive genetic mouse model studied by our group.*° GRM5), as well as GAD1, an enzyme involved in glutamate
Another closely related molecule, NCAM1 (neural cell adhesion metabolism, and SLC1A2, a glutamate transporter (Table 1). Other
molecule 1), is among our top candidate genes as well. These genes involved in glutamate signaling present in our data, with a
data support a central role for cell connectivity and cell lower scores, are GRIN2A, SLC1A3, GRIA3, GRIK4, GRM1, GRM4 and
adhesion in schizophrenia. GRM7 (Supplementary Table S1). Glutamate receptor signaling is
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Figure 7.

Overlap between independent genome-wide association study (GWAS). AA, African American; EA, European American; CFG, con-

vergent functional genomics; ISC, International Schizophrenia Consortium; SNP, single-nucleotide polymorphism.

one of the top canonical pathways over-represented in our
analyses (Table 2), and that finding is reproduced in independent
GWA data sets (Table 2). One has to be circumspect with inter-
preting such results, as glutamate signaling is quasi-ubiquitous in
the brain, and a lot of prior hypothesis-driven work has focused on
this area, potentially biasing the available evidence. Nevertheless,
our results are striking, and contribute to the growing body of
evidence that has emerged over the last few years implicating
glutamate signaling as a point of convergence for findings in
schizophrenia,®® as well as for autism®® and AD.>’ Glutamate
signaling is the target of active drug development efforts,>® which
may be informed and encouraged by our current findings.

Our analysis also provides evidence for other genes that have
long been of interest in schizophrenia, but have had previous
variable evidence from genetic-only studies: BDNF, COMT, DRD2,
DTNBP1 (dystrobrevin binding protein1/dysbindin; Table 1). In
addition, our analysis provides evidence for genes that had
previously not been widely implicated in schizophrenia, but do
have relevant biological roles, demonstrating the value of
empirical discovery-based approaches such as CFG (Table 1):
ANK3,*® ALDH1A1 and ADCYAP1, which is a ligand for schizo-
phrenia candidate gene VIPR2,>>%° also present in our data set,
albeit with a lower CFG score of 2. Other genes of interest in
our full data set (Supplementary Table S1) include ADRBK2 (GRK3),
first described by us as a candidate gene for psychosis,’
CHRNA7," and PDE10A,%? which are targets for drug development
efforts.

Pathways and mechanisms

Our pathway analyses results are consistent with the accumulating
evidence about the role of synaptic connections and glutamate
signaling in schizophrenia, most recently from CNV studies®®
(Table 2, Supplementary Table S5, Figure 3). Very importantly,
the same top pathways were consistent across independent
GWA studies we analyzed (Tables 2, 5, and Supplementary
Table S5). We also did a manual curation of the top candidate
genes and their grouping into biological roles examining them
one by one using PubMed and GeneCards, to come up with a
heuristic model of schizophrenia (Figure 3). Overall, while multiple
mechanistic entry points may contribute to schizophrenia
pathogenesis (Figure 3a), it is likely at its core a disease of
decreased cellular connectivity precipitated by environmental
stress during brain development, on a background of genetic
vulnerability (Figure 3b).

© 2012 Macmillan Publishers Limited

Genetic risk prediction

Of note, our SNP panels and choice of affected alleles were based
solely on analysis of the discovery ISC GWAS, completely
independently from the test GAIN EA, GAIN AA, nonGAIN EA
and nonGAIN AA GWAS. Our results show that a relatively limited
and well-defined panel of SNPs identified based on our CFG
analysis could differentiate between schizophrenia subjects and
controls in four independent cohorts of two different ethnicities,
EA and AA. Moreover, the genetic risk component identified by us
seems to be stronger for classic age of onset schizophrenia than
for early or late-onset illness, suggesting that the latter two may
be more environmentally driven or have a somewhat different
genetic architecture. It is likely that such genetic testing will have
to be optimized for different cohorts if done at a SNP level.
Interestingly, at a gene and pathway level, the differences
between studies seem much less pronounced than at a SNP
level, if at all present (Table 5), suggesting that gene-level and
pathway-level tests may have more universal applicability. In the
end, such genetic data, combined with family history and other
clinical information (phenomics),®* as well as with blood
biomarker testing,” may provide a comprehensive picture of risk
of illness.5>%¢

Reproducibility among studies

Our work provides striking evidence for the advantages,
reproducibility and consistency of gene-level analyses of data, as
opposed to SNP level analyses, pointing to the fundamental issue
of genetic heterogeneity at a SNP level (Table 5 and Figure 7).
In fact, it may be that the more biologically important a gene
is for higher mental functions, the more heterogenity it has
at a SNP level®” and the more evolutionary divergence,%® for
adaptive reasons. On top of that, CFG provides a way to prioritize
genes based on disease relevance, not study-specific effects
(that is, fit-to-disease as opposed to fit-to-cohort). Reproducibility
of findings across different studies, experimental paradigms and
technical platforms is deemed more important (and scored as
such by CFG) than the strength of finding in an individual study
(for example, P-value in a GWAS). The CFG prioritized genes show
even more reproducibility among independent GWAS cohorts
(ISC, GAIN EA, GAIN AA) than the full list of unprioritized genes
with nominal significant SNPs. The increasing overlap and
reproducibility between studies of genes with a higher average
CFG score points out to their biological relevance to disease
architecture. Finally, at a pathway level, there is even more
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Figure 8. Genetic overlap among psychiatric disorders.

consistency across studies. Again, the pathways derived from the
top CFG scoring genes show more consistency than the pathways
derived from the lower CFG scoring genes. Overall, using our
approach, we go from a reproducibilty between independent
studies of 0.4% at the level of nominally significant SNPs to a
reproducibility of 97.1% at the level of pathways derived from top
CFG scoring genes.

Overlap with other psychiatric disorders

Despite using lines of evidence for our CFG approach that have to
do only with schizophrenia, the list of genes identified has a
notable overlap with other psychiatric disorders (Figure 8,
Supplementary Table S1). This is a topic of major interest and
debate in the field.'>%® We demonstrate an overlap between top
candidate genes for schizophrenia and candidate genes for
anxiety and bipolar disorder, previously identified by us through
CFG (Figure 8), thus providing a possible molecular basis for the
frequently observed clinical co-morbidity and interdependence
between schizophrenia and those other major psychiatric
disorders, as well as cross-utility of pharmacological agents. In
particular, PDE10A is at the overlap of all three major psychiatric
domains, and may be of major interest for drug development.®?
The overlap between schizophrenia and bipolar may have to do
primarily with neurotrophicity and brain infrastructure (underlined
by genes such as DISC1, NRG1, BDNF, MBP, NCAM1, NRCAM,
PTPRM). The overlap between schizophrenia and anxiety may
have to do primarily to do with reactivity and stress response
(underlined by genes such as NR4A2, QKI, RGS4, HSPA1B, SNCA,
STMN1, LPL). Notably, the overlap between schizophrenia and
anxiety is of the same magnitude as the previously better
appreciated overlap between schizophrenia and bipolar disor-
der,”® supporting the consideration of a nosological domain of
schizoanxiety disorder,”® by analogy to schizoaffective disorder.
Clinically, while there are some reports of co-morbidity between
schizophrenia and anxiety,”" it is an area that has possibly been
under-appreciated and understudied. ‘Schizoanxiety disorder’ may
have heuristic value and pragmatic clinical utility.

We also looked at the overlap with candidate genes for autism
and AD from the literature (Supplementary Table S1), to elucidate
whether schizophrenia, autism and AD might be on a spectrum,
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that is, whether autism might be a form of ‘schizophrenia praecox’,
similar to schizophrenia being referred to as ‘dementia praecox’
(Kraepelin). We see significant overlap between the three
disorders among the top genes with a CFG score of 4: a third of
the genes overlap between schizophrenia and autism, and a
quarter between schizophrenia and AD. Additional key genes of
interest are lower on the list as well, with a CFG score of 3:
CNTNAP2 for autism, MAPT and SNCA for AD (Supplementary
Table S1).

Conclusions and future directions

First, in spite of its limitations, our analysis is arguably the most
comprehensive integration of genetics and functional genomics
to date in the field of schizophrenia, yielding a comprehensive
view of genes, blood biomarkers, pathways and mechanisms that
may underlie the disorder. From a pragmatic standpoint, we
would like to suggest that our work provides new and/or more
comprehensive insights on genes and biological pathways to
target for new drug development by pharmaceutical companies,
as well as potential new uses in schizophrenia for existing drugs,
including omega-3 fatty acids (Supplementary Table S2).

Second, our current work and body of work over the years
provides proof how a combined approach, integrating functional
and genotypic data, can be used for complex disorders-psychiatric
and non-psychiatric, as has been attempted by others as well.”%”3
What we are seeing across GWAS of complex disorders are not
necessarily the same SNPs showing the strongest signal, but
rather consistency at the level of genes and biological pathways.
The distance from genotype to phenotype may be a bridge too
far for genetic-only approaches, given genetic heterogeneity
and the intervening complex layers of epigenetics and gene
expression regulation.”* Consistency is much higher at a gene
expression level (Table 5),”> and then at a biological pathway level.
Using GWAS data in conjunction with gene expression data as
part of CFG or integrative genomics’® approaches, followed by
pathway-level analysis of the prioritized candidate genes, can lead
to the unraveling of the genetic code of complex disorders such as
schizophrenia.

Third, our work provides additional integrated evidence
focusing attention and prioritizing a number of genes as
candidate blood biomarkers for schizophrenia, with an inherited
genetic basis (Table 1 and Figure 2). While prior evidence existed
as to alterations in gene expression levels of those genes in whole-
blood samples or lymphoblastoid cell lines from schizophrenia
patients, it was unclear prior to our analysis whether those
alterations were truly related to the disorder or were instead
related only to medication effects and environmental factors.

Fourth, we have put together a panel of SNPs, based on the top
candidate genes we identified. We developed a GRPS based on
our panel, and demonstrate how in four independent cohorts of
two different ethnicities, the GRPS differentiates between subjects
with schizophrenia and normal controls. From a personalized
medicine standpoint, genetic testing with highly prioritized panels
of best SNP markers may have, upon further development
(Figure 6) and calibration by ethnicity and gender, a role in
informing decisions regarding early intervention and prevention
efforts; for example, for classic age of onset schizophrenia before
the illness fully manifests itself clinically, in young offspring from
high-risk families. After the illness manifests itself, gene expression
biomarkers and phenomic testing approaches, including clinical
data, may have higher yield than genetic testing. A multi-modal
integration of testing modalities would be the best approach to
assess and track patients, as individual markers are likely to not be
specific for a single disorder. The continuing re-evaluation in
psychiatric nosology®®”” brought about by recent advances will
have to be taken into account as well for final interpretation of any
such testing. The complexity, heterogeneity, overlap and inter-
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dependence of major psychiatric disorders as currently defined by
DSM suggests that the development of tests for dimensional
disease manifestations (psychosis, mood and anxiety)®® will
ultimately be more useful and precise than developing tests for
existing DSM diagnostic categories.

Finally, while we cannot exclude that rare genetic variants with
major effects may exist in some individuals and families, we
suggest a contextual cumulative combinatorics of common
variants genetic model best explains our findings, and accounts
for the thin genetic load margin between clinically ill subjects and
normal controls, which leaves a major role to be played by gene
expression (including epigenetic changes) and the environment.
This is similar to our conclusions when studying bipolar disorder,’
and may hold true in general for complex medical disorders,
psychiatric and non-psychiatric. Full-blown illness occurs when
genetic and environmental factors converge, usually in young
adulthood for schizophrenia. When they diverge, a stressful/
hostile environment may lead to mild or transient iliness even in
normal genetic load individuals, whereas a favorable environment
may lead to supra-normative functioning in certain life areas
(such as creative endeavors) for individuals who carry a higher
genetic load. The flexible interplay between genetic load,
environment and phenotype may permit evolution to engender
diversity, select and conserve alleles, and ultimately shape
populations. Our emerging mechanistic understanding of psycho-
sis as disconnectivity, mood as activity'' and anxiety as reactivity*®
may guide such testing and understanding of population
distribution as being on a multi-dimensional spectrum, from
supra-normative to normal to clinical illness.
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Figure S1. Lack of gene size effect bias with our CFG approach.
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Table S1.Top candidate genes for schziophrenia- extended list. CFG analysis of ISC GWAS data. Genes with a CFG
score of 3 and above. For top genes with CFG score of 4 and above, we also list wether there is any evidence for involvement in autism and/or
Alzheimer Disease (AD). 15 of 42 had evidence of involvement in autism and 10 out 42 had evidence of involvement in AD.

Gene Symbol/Name CFG Score A.u tism Alzh eimer
Evidence Evidence
DISC1 50 Yes Yes
disrupted in schizophrenia 1 ' Kilpinen et al. 2008 Young-Pearse 2011
HSPA1B
heat shock 70kDa protein 1B 5.0
MBP Yes
myelin basic protein 5.0 Desai 2009
TCF4
transcription factor 4 5.0
MOBP
myelin-associated oligodendrocyte basic protein 4.0
NCAM1
neural cell adhesion molecule 1 4.5
NDUFV2
NADH dehydrogenase (ubiquinone) flavoprotein 2, 24kDa 4.5
NRCAM 45 Yes
neuronal cell adhesion molecule ’ Marui et al. 2009
RAB18
RAB18, member RAS oncogene family 4.5
ADCYAP1
adenylate cyclase activating polypeptide 1 (pituitary) 4.0
ALDH1A1
aldehyde dehydrogenase 1 family, member A1 4.0
ANK3
ankyrin 3, node of Ranvier (ankyrin G) 4.0
BDNF 40 Yes Yes
brain-derived neurotrophic factor ’ Correia et al. 2010 Nagahara et al. 2009
CD9
CD9 molecule 4.0
CNR1 40 Yes
cannabinoid receptor 1 (brain) ' Chakrabarti et al. 2011
COMT
catechol-O-methyltransferase 4.0
CPLX2 40 Yes
complexin 2 ' Voineagu et al. 2011
DRD2
dopamine receptor D2 4.0
DTNBP1
dystrobrevin binding protein 1 4.0
FABP7
fatty acid binding protein 7, brain 4.0
GABRB3 40 Yes Yes
gamma-aminobutyric acid (GABA) A receptor, beta 3 ' Buxbaum et al. 2002 Simpson et al. 2011
GAD1
glutamate decarboxylase 1 (brain, 67kDa) 4.0
GNB1L 40 Yes
guanine nucleotide binding protein (G protein), beta polypeptide 1-like ' Chen et al. 2011
GRIA1
glutamate receptor, ionotropic, AMPA 1 4.0
GRIA4 Yes
glutamate receptor, ionotrophic, AMPA 4 4.0 Jacob CP et al. 2007
GRIN2B 40 Yes Yes
glutamate receptor, ionotropic, N-methyl D-aspartate 2B ’ O’Roak et al. 2011 Stein JL et al. 2010
GRM5 40 Yes
glutamate receptor, metabotropic 5 ' Dolen et al. 2007
GSN
gelsolin 4.0
HINT1
histidine triad nucleotide binding protein 1 4.0
HTR2A 4.0



http://www.ncbi.nlm.nih.gov/pubmed?term=%22Jacob%20CP%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Stein%20JL%22%5BAuthor%5D

5-hydroxytryptamine (serotonin) receptor 2A

Yes Yes
KALRN 4.0 Ben-David et al. 2011 Youn H et. 2007
kalirin, RhoGEF kinase Hussman et al. 2011
KIF2A 40 Yes
kinesin heavy chain member 2A ' Voineagu et al. 2011
NR4A2
nuclear receptor subfamily 4, group A, member 2 4.0
NRG1
neuregulin 1 4.0
Yes
PDE4B 40

phosphodiesterase 4B, cAMP-specific Braun et al. 2007

PRKCA Yes

protein kinase C, alpha 4.0 Hussman et al. 2011
Yes Yes
RELN 40 Ashley-Koch et al., Kramer PL et al. 2011
reelin ' 2007; Perisco et al.,
2002
RGS4 Yes
regulator of G-protein signaling 4 4.0 Emilsson L et al. 2006
SLC1A2
solute carrier family 1 (glial high affinity glutamate transporter), member 2 4.0
SNAP25 Yes
synaptosomal-associated protein, 25kDa 4.0 Adlard PA et al. 2010
SYN2
synapsin |l 4.0
TNIK
TRAF2 and NCK interacting kinase 4.0

ACBD3
acyl-CoA binding domain containing 3 3.5
ARID5A
AT rich interactive domain 5A (MRF 1-like) 3.5
ASAH1
N-acylsphingosine amidohydrolase (acid ceramidase) 1 3.5
B2M
beta-2-microglobulin 3.5
C1QB
complement component 1, g subcomponent, B chain 3.5
CALB1
calbindin 1, 28kDa 3.5
CASP3
caspase 3, apoptosis-related cysteine peptidase 3.5
CCND3
cyclin D3 3.5
CD47
CD47 molecule 3.5
CNR2
cannabinoid receptor 2 (macrophage) 3.5
DNAJA4
DnaJ (Hsp40) homolog, subfamily A, member 4 3.5
DUSP1
dual specificity phosphatase 1 3.5
EBF1
early B-cell factor 1 3.5
EGR1
early growth response 1 3.5
FUT8
fucosyltransferase 8 (alpha (1,6) fucosyltransferase) 3.5
FYN
FYN oncogene related to SRC, FGR, YES 3.5
GAP43 3.5



http://www.ncbi.nlm.nih.gov/pubmed?term=%22Youn%20H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kramer%20PL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Emilsson%20L%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Adlard%20PA%22%5BAuthor%5D

growth associated protein 43

GNPDA1
glucosamine-6-phosphate deaminase 1 3.5
GRIN2A
glutamate receptor, ionotropic, N-methyl D-aspartate 2A 3.5
HSPA1A
heat shock 70kDa protein 1A 3.5
IGF1R
insulin-like growth factor 1 receptor 3.5
LPL
lipoprotein lipase 3.5
MAL
mal, T-cell differentiation protein 3.5
MAP6
microtubule-associated protein 6 3.5
MFHASH1
malignant fibrous histiocytoma amplified sequence 1 3.5
MMD
monocyte to macrophage differentiation-associated 3.5
MYLK
myosin light chain kinase 3.5
NEFL
neurofilament, light polypeptide 3.5
NEFM
neurofilament, medium polypeptide 3.5
NFKBIA
nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha 3.5
NTSR2
neurotensin receptor 2 3.5
PDE10A
phosphodiesterase 10A 3.5
PDE4D
phosphodiesterase 4D, cAMP-specific 3.5
PKM2
pyruvate kinase, muscle 3.5
PRKAR2B
protein kinase, CAMP-dependent, regulatory, type I, beta 3.5
PRNP
prion protein 3.5
RAB2A
RAB2A, member RAS oncogene family 3.5
RAP2A
RAP2A, member of RAS oncogene family 3.5
RIMS3
regulating synaptic membrane exocytosis 3 3.5
SH3GL2
SH3-domain GRB2-like 2 3.5
SLC1A3
solute carrier family 1 (glial high affinity glutamate transporter), member 3 3.5
SLC6A9
solute carrier family 6 (neurotransmitter transporter, glycine), member 9 3.5
SOD1
superoxide dismutase 1, soluble 3.5
STXBP6
syntaxin binding protein 6 (amisyn) 3.5
VDAC1
voltage-dependent anion channel 1 3.5
YWHAE
tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, epsilon
polypeptide 3.5
ZBTB16
zinc finger and BTB domain containing 16 3.5
ABCA1
ATP-binding cassette, sub-family A (ABC1), member 1 3.0
ADCY1
adenylate cyclase 1 (brain) 3.0




ADRBK2 (GRK3)

adrenergic, beta, receptor kinase 2 3.0
APC
adenomatous polyposis coli 3.0
ARHGAP18
Rho GTPase activating protein 18 3.0
ATXNA1
ataxin 1 3.0
AZIN1
antizyme inhibitor 1 3.0
CACNG2
calcium channel, voltage-dependent, gamma subunit 2 3.0
CHRNA7
cholinergic receptor, nicotinic, alpha 7 3.0
CLU
clusterin 3.0
CMIP
c-Maf inducing protein 3.0
CNTNAP2
contactin associated protein-like 2 3.0
CPD
carboxypeptidase D 3.0
DDR1
discoidin domain receptor tyrosine kinase 1 3.0
DLG2
discs, large homolog 2 (Drosophila) 3.0
DSC3
desmocollin 3 3.0
DUSP6
dual specificity phosphatase 6 3.0
EGF
epidermal growth factor 3.0
EGR2
early growth response 2 3.0
EML1
echinoderm microtubule associated protein like 1 3.0
ERBB4
v-erb-a erythroblastic leukemia viral oncogene homolog 4 (avian) 3.0
FEZ1
fasciculation and elongation protein zeta 1 (zygin I) 3.0
FGFR3
fibroblast growth factor receptor 3 3.0
FzD3
frizzled family receptor 3 3.0
GABRB2
gamma-aminobutyric acid (GABA) A receptor, beta 2 3.0
GNAL
guanine nucleotide binding protein (G protein), alpha activating activity polypeptide,
olfactory type 3.0
GNAO1
guanine nucleotide binding protein (G protein), alpha activating activity polypeptide
o 3.0
GPM6A
glycoprotein M6A 3.0
GPM6B
glycoprotein M6B 3.0
GPR137B
G protein-coupled receptor 137B 3.0
GRIA3
glutamate receptor, ionotrophic, AMPA 3 3.0
GRIK4
glutamate receptor, ionotropic, kainate 4 3.0
GRM1
glutamate receptor, metabotropic 1 3.0
GRM4 3.0




glutamate receptor, metabotropic 4

GRM7
glutamate receptor, metabotropic 7 3.0
GULP1
GULP, engulfment adaptor PTB domain containing 1 3.0
HTR7
5-hydroxytryptamine (serotonin) receptor 7 (adenylate cyclase-coupled)
IFITM3
interferon induced transmembrane protein 3 3.0
KCNB1
potassium voltage-gated channel, Shab-related subfamily, member 1 3.0
KIAA0513 3.0
KLF5
Kruppel-like factor 5 (intestinal) 3.0
KMO
kynurenine 3-monooxygenase (kynurenine 3-hydroxylase) 3.0
LMO3
LIM domain only 3 (rhombotin-like 2) 3.0
MAPT
microtubule-associated protein tau 3.0
MCF2
MCEF.2 cell line derived transforming sequence 3.0
MCTP2
multiple C2 domains, transmembrane 2 3.0
MEGF10
multiple EGF-like-domains 10 3.0
MOG
myelin oligodendrocyte glycoprotein 3.0
NCOA2
nuclear receptor coactivator 2 3.0
NMT1
N-myristoyltransferase 1
NOS1
nitric oxide synthase 1 (neuronal) 3.0
NPAS2
neuronal PAS domain protein 2 3.0
NPY
neuropeptide Y 3.0
NR4A3
nuclear receptor subfamily 4, group A, member 3 3.0
NRGN
neurogranin (protein kinase C substrate, RC3) 3.0
NTF3
neurotrophin 3 3.0
NTNG1
netrin G1 3.0
PCLO
piccolo (presynaptic cytomatrix protein) 3.0
PCM1
pericentriolar material 1 3.0
PDE7B
phosphodiesterase 7B 3.0
PDYN
prodynorphin 3.0
PLLP
plasmolipin 3.0
PLXNA2
plexin A2 3.0
PNPLA8
patatin-like phospholipase domain containing 8 3.0
PPM1A
protein phosphatase, Mg2+/Mn2+ dependent, 1A 3.0
PRKAG2
protein kinase, AMP-activated, gamma 2 non-catalytic subunit 3.0
PSAP
prosaposin 3.0




PTPRM

protein tyrosine phosphatase, receptor type, M 3.0
PTPRZ1
protein tyrosine phosphatase, receptor-type, Z polypeptide 1 3.0
QKI
quaking homolog, KH domain RNA binding (mouse) 3.0
QPCT
glutaminyl-peptide cyclotransferase 3.0
RAB31
RAB31, member RAS oncogene family 3.0
RHOBTB3
Rho-related BTB domain containing 3 3.0
RIMS3
regulating synaptic membrane exocytosis 3 3.0
S100A10 (p11)
S100 calcium binding protein A10 3.0
SCAMP1
secretory carrier membrane protein 1 3.0
SERPINI1
serpin peptidase inhibitor, clade | (neuroserpin), member 1 3.0
SLC2A3
solute carrier family 2 (facilitated glucose transporter), member 3 3.0
SLC44A1
solute carrier family 44, member 1 3.0
SLC4A4
solute carrier family 4, sodium bicarbonate cotransporter, member 4 3.0
SLC6A3
solute carrier family 6 (neurotransmitter transporter, dopamine), member 3 3.0
SLC6A5
solute carrier family 6 (neurotransmitter transporter, glycine), member 5 3.0
SNCA
synuclein, alpha (non A4 component of amyloid precursor) 3.0
SPOCK3
sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 3 3.0
SPON1
spondin 1, extracellular matrix protein 3.0
STMN1
stathmin 1 3.0
TAGLN3
transgelin 3 3.0
TAL1
T-cell acute lymphocytic leukemia 1 3.0
TMEM106B
transmembrane protein 106B 3.0
uUSP2
ubiquitin specific peptidase 2 3.0
USP7
ubiquitin specific peptidase 7 (herpes virus-associated) 3.0
USP9X
ubiquitin specific peptidase 9, X-linked 3.0
VLDLR
very low density lipoprotein receptor 3.0
VSNLA1
visinin-like 1 3.0
YWHAZ
tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta
polypeptide 3.0
ZCCHC12
zinc finger, CCHC domain containing 12 3.0
ZFHX3
zinc finger homeobox 3 3.0
ZNF804A
zinc finger protein 804A 3.0




Table S2. Top candidate genes for schizophrenia from Table 1 that are targets of existing drugs.

DHA
(Le-
Niculescu et
al. 2011)
Brain region
. (Direction of
Location change)
ALDH1A1
aldehyde dehydrogenase 1 AMY (1)
family, member A1 Cytoplasm disulfiram, chlorpropamide, DHA 4.0
CNR1
cannabinoid receptor 1 trans-(+)-nabilone,SLV 319,rimonabant,BAY 38-7271,delta-8-tetrahydrocannabinol,delta-9-
(brain) Plasma Membrane tetrahydrocannabinol 4.0
COMT
catechol-O-
methyltransferase Cytoplasm BIA-3-202,tolcapone,entacapone 4.0
DRD2 AMY (1)
dopamine receptor D2 Plasma Membrane antipsychotics 4.0
GABRB3
gamma-aminobutyric acid HIP (D)
(GABA) A receptor, beta 3 Plasma Membrane benzodiazepines 4.0
GRIA1
glutamate receptor,
ionotropic, AMPA 1 Plasma Membrane talampanel,Org 24448,L.Y451395,tezampanel 4.0
GRIA4
glutamate receptor,
ionotrophic, AMPA 4 Plasma Membrane talampanel,Org 24448,L.Y451395,tezampanel 4.0
dextromethorphan,neramexane,bicifadine,delucemine,CR 2249,besonprodil, UK-240455,
GRIN2B ,ketamine,felbamate,memantine,orphenadrine,cycloserine,N-(2-
glutamate receptor, indanyl)glycinamide,dextromethorphan,brompheniramine/dextromethorphan/pseudoephedrine,chlorpheniramin
ionotropic, N-methyl D- e/dextromethorphan/phenylephrine,carbinoxamine/dextromethorphan/pseudoephedrine,dextromethorphan/pro
aspartate 2B Plasma Membrane methazine, 1-aminocyclopropane-1-carboxylic acid 4.0
GRM5
glutamate receptor,
metabotropic 5 Plasma Membrane fasoracetam 4.0
HTR2A
5-hydroxytryptamine atypical antipsychotics
(serotonin) receptor 2A Plasma Membrane dihydroergotamine,apomorphine,ergotamine,azatadine 4.0
NCAM1
neural cell adhesion
molecule 1 Plasma Membrane BB-10901 4.5
PDE4B dyphylline,nitroglycerin,arofylline,tetomilast,L
phosphodiesterase 4B, 869298,aminophylline,anagrelide,cilomilast,milrinone,rolipram,dipyridamole, L-
cAMP-specific Cytoplasm 826,141, roflumilast,tolbutamide, theophylline, pentoxifylline,caffeine 4.0
PRKCA
protein kinase C, alpha Cytoplasm L-threo-safingol 4.0 BLOOD (D)
SLC1A2
solute carrier family 1 (glial
high affinity glutamate BLOOD (D)
transporter), member 2 Plasma Membrane riluzole 4.0
SNAP25
synaptosomal-associated BLOOD (D)
protein, 25kDa Plasma Membrane botulinum toxin type A 4.0




Table S3. GRPS-542: Panel of SNPs used for genetic risk prediction of schziophrenia. Panel contains all the
nominally significant SNPs in the top 42 candidate genes from Table 1 identified by CFG in the ISC GWAS. In the rightmost columns are the alleles, p-
values and OR in the independent test cohorts GAIN EA and GAIN AA. Assignment of disease alleles to be tested is based on OR from the ISC,
information from the test cohorts.

independent of an

S mg:DZene SNP Probe | A1(IS | A2(IS P(ISC) OR(IS A1(GA | A2(GA P(GAI OR(GA Al(GA | A2(GA P(GAI OR(GA
Y Name Set ID Q) q) C) INEA) | INEA) N EA) IN EA) IN AA) | IN AA) N AA) IN AA)
SNP_
rs99545 A- 0.0028 0.876
74 42266 C T 76 5 G A 0.5837 1.039 A G 0.8128 | 0.9843
37
SNP_
rs81093 A- 0.0039
0 17841 G A 12 0.877 G A 0.8854 1.01 A G 0.2401 | 0.9253
56
SNP_
rs80931 A- 0.0068 0.881
1 20899 G A 75 7 C T 0.7968 1.019 C T 0.5002 1.048
95
SNP_
rs88189 A- 0.0091 0.685 0.0264
7 42565 A C 04 5 T G 0.7172 1.056 T G 7 1.178
41
SNP_
rs80917 A- 0.0147 0.875
65 26286 C A 7 9 C A 0.5493 | 0.9643 NA NA NA NA
ADCYAP1 59
(adenylate SNP_
cyclase rs11665 A- 0.0154
activating 625 34855 A G 7 1.129 T C 0.7129 | 0.9794 C T 0.9275 | 0.9938
polypeptide 1 36
(pituitary)) SNP_
rs78904 A- 0.0183 0.858
2 82890 G A 3 7 C T 0.9609 1.003 T C 0.6207 | 0.9672
25
SNP_
rs16954 A- 0.0264 0.858
588 18472 T C 4 3 A G 0.6115 0.948 A G 0.3851 1.081
19
SNP_
rs81257 A- 0.0274 0.853
3 34827 A G 7 7 T C 0.7775 1.02 C T 0.4547 | 0.9523
71
SNP_
rs78903 A- 0.0326 0.863
3 20324 G C 3 7 C G 0.6115 0.948 C G 0.4704 1.069
70
SNP_
rs78904 A- 0.0440 0.822
6 83046 G A 3 6 C T 0.7828 | 0.9738 C T 0.3921 1.085
74
SNP_
ALDH1A1 rs11143 A- G A 0.0252 1.258 C T 0.1211 | 0.8501 C T 0.0425 0.7837
438 83649 6 4
(aldehyde
15
dehydrogenas
elfamiy, | 0400 Sﬁl 0.0492 | 0.896 0.0388
member A1) 07 85248 C T 9 ) G A 1 1.141 G A 0.611 0.9673
80
SNP_
ANK3 rs49482 A- A C 0.0017 1.154 T G 0.826 1.015 T G 0.1263 | 0.8085
. 56 22357 27
(ankyrin 3, 53
node of
Ranvier SNP_
. rs79226 A- 0.0060 0.894 0.0391
k G
(ankyrin G)) 2 22536 A G 55 1 T C 4 0.8731 T C 0.386 0.9417
26




SNP_

rs70874 A- 0.0091
89 19148 35 0.904 0.1151 | 0.9057 0.5653 | 0.9529
25
SNP_
rs10761 A- 0.0105 0.900 0.0975
507 23102 6 9 3 0.8969 0.2538 | 0.9187
29
SNP_
rs10740 A- 0.0128
035 20016 3 0.907 0.123 | 0.9068 0.6022 | 1.035
30
SNP_
rs11813 A- 0.0167 | 0.886 0.0087
307 84148 8 7 0.361 0.9497 64 0.8325
24
SNP_
rs16915 A- 0.0190 0.0080
157 22779 ) 1.106 9% 1.204 0.8286 | 0.9782
48
SNP_
rs88359 A- 0.0198 | 0.912
1 17956 5 4 0.3343 | 0.9405 0.8656 1.012
29
SNP_
rs10761 A- 0.0208 | 0.841
432 42888 6 2 0.4198 | 0.9344 0.1955 | 0.9154
36
SNP_
rs10509 A- 0.0215 0.0064
133 42140 6 1.116 56 1.212 0.4894 | 0.9309
95
SNP_
rs70726 A- 0.0247 | 0.908
78 18390 3 4 0.1419 | 0.9111 0.6757 | 0.9728
57
SNP_
rs12767 A- 0.0254 | 0.913
186 19479 5 8 0.9831 1.001 0.3879 1.066
18
SNP_
rs49484 A- 0.0271 0.0122
22 22215 5 1.088 6 1.166 0.2971 | 1.075
89
SNP_
rs19385 A- 0.0287 0.0088
26 22651 2 1.169 69 1351 0.6747 | 0.9077
52
SNP_
rs14425 A- 0.0295 | 0.913
40 20298 3 4 0.6587 | 0.973 0.7574 | 1.021
04
SNP_
rs10994 A- 0.0364
257 84507 ) 1.118 0.8932 | 1.008 0.6601 | 0.9564
00
SNP_
rs10994 A- 0.0375 0.0235
322 | 22782 3 1.1e8 4 132 0.6103 | 0.9411
63
SNP_
rs16915 A- 0.0097
156 22001 0.0378 | 1.102 4 1.198 0.8598 | 0.982
86
SNP_
rs13482 A- 0.0440 | 0.892
81 20816 8 3 0.1301 | 0.9079 0.8361 | 0.9864
11
SNP_
rsg%i% A- 0'0;‘66 1.104 0.1174 | 1.124 0.1536 | 1.122

21689
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BDNF
(brain-derived
neurotrophic
factor)

SNP_

rs10742 A- 0.0016 | 0.877

178 18669 66 2 0.745 1.022 0.8097 | 0.984
62
SNP_

rs10501 A- 0.0019 | 0.872

087 20090 66 4 0.7737 1.02 0.8128 | 1.031
74
SNP_

rs21014 A- 0.0020 | 0.869

67 19030 81 3 0.5147 | 1.044 0.5106 | 0.9565
16
SNP_

rs11140 A- 0.0023 | 0.871

29 20090 97 6 0.6661 1.029 0.9104 | 0.9925
68
SNP_

rs49227 A- 0.0026 | 0.872

38 42793 02 4 0.644 1.031 0.8403 | 0.9866
38
SNP_

rs49234 A- 0.0027 | 0.876

60 23138 46 3 0.6062 1.038 0.0243 | 0.8116
24
SNP_
A- 0.0033 | 0.875

rs6265 20389 75 1 0.8989 | 0.9907 0.7794 | 0.9544
25
SNP_

rs11030 A- 0.0034 | 0.878

104 19086 35 8 0.8276 1.015 0.7602 1.05
63
SNP_

rs10134 A- 0.0055 | 0.889

42 20090 52 6 0.8711 1.011 0.3522 | 0.8743
67
SNP_

rs11030 A- 0.0126

119 21409 6 1.101 0.5626 | 1.036 0.9957 | 0.9996
52
SNP_

rs98871 A- 0.879

2 42062 0.0312 3 0.9227 1.007 0.657 | 0.9356
25
SNP_

rs11030 A- 0.0408 | 0.903

179 23009 4 2 0.4952 | 0.947 0.4036 | 0.9158
36
SNP_

rs10501 A- 0.0428

090 83348 7 1.349 0.6591 1.072 0.2573 | 1.158
67
SNP_

rs11030 A- 0.0454 | 0.904

182 21576 7 9 0.5053 | 0.9479 0.3932 | 0.9133
21
SNP_

rs71054 A- 0.0462 | 0.906

10 42756 8 9 0.9336 | 0.9933 0.8672 | 0.9863
77
SNP_

rs11030 A- 0.0483

066 21582 6 1.108 0.9851 1.002 0.12 0.738
42
SNP_

rs11030 A- 0.0493 | 0.899

175 18797 9 1 0.3108 | 1.092 0.7901 | 0.9574

75




SNP_

CcD9
rs31812 A-
mcflilzzle) 91 82960 0.0455 0.904 0.3027 | 0.9434 0.8878 1.01
74
SNP_
rs13240 A- 0.0025 0.880 0.0282
73 19867 67 6 1 1.159 0.6394 | 0.9514
83
CNR1 SNP_
(cannabinoid rs93624 A- 0.0071 0.0597
receptor 1 73 83888 6 1.228 05655 | 1.051 .| 06979
(brain)) 06
SNP_
rs81806 A- 0.0469 0.886
50 86908 7 9 0.8567 | 0.9877 0.5646 1.04
35
comT SNP_
(catechol-O- rs15443 A- 0.0409 0.0145
methyltransfe 25 36610 3 1.11 0.8614 | 0.9901 7 1.193
rase) 36
SNP_
CPLX2 rs10213 A- 0.0433
(complexin 2) 927 | 84310 8 1.109 03765 | 1.052 0.5497 | 0.9571
92
SNP_
rs10910 A- 0.0029 0.736 0.0685
616 84343 34 3 6 1.232 0.1061 1.442
84
SNP_
rs12076 A- 0.0104 0.0285
286 84900 9 1.181 5 1.168 0.1678 1.109
13
SNP_
rs97282 A- 0.0259
61 86092 6 1.124 0.6427 1.028 0.9908 1.001
86
SNP_
rs45609 A- 0.0269
87 83929 7 1.119 0.5383 | 0.9656 0.1507 | 0.8793
87
SNP_
rs97829 A- 0.0274
27 42864 6 1.145 0.6566 1.031 0.796 1.04
43
SNP_
rs12087 A- 0.0293 0.831
'DISC1 ) 592 18908 6 3 0.3358 | 0.8814 0.1181 1.114
(disrupted in
. . 45
schizophrenia
1) SNP_
rs12065 A- 0.0295
101 85366 3 0.748 0.4245 1.107 0.5649 1.04
82
SNP_
rs12058 A- 0.0914
117 86771 0.0375 1.504 3 1.563 0.8389 | 0.9815
73
SNP_
rs86858 A- 0.0379
4 83804 P 0.859 0.8064 0.983 0.2386 1.09
40
SNP_
rs78936 A- 0.0405
8 84256 5 1.123 0.8222 1.014 0.5653 | 0.9462
51
SNP_
rs46428 A- 0.0446 0.824 0.0011
29 85177 4 3 0.4952 | 0.9303 59 0.5157
80
SNP_
r5957;)07 A- 0.046 0'7779 0.3592 | 0.8842 0.1879 1.126

84139




77

SNP_
rs59393 A- 0.0495 | 0.894
5 42906 6 4 0.5082 1.045 0.203 0.8157
32
SNP_
rs12791 A- 0.0115
990 84645 1 1.19 0.1362 | 1.124 0.1193 | 1.144
58
SNP_
rs45346 A- 0.0176 | 0.886 0.0753
13 84200 5 5 3 0.9036 0.9196 | 0.9934
69
SNP_
rs43091 A- 0.0190 | 0.880
87 84688 7 1 0.1505 | 0.9159 0.4215 | 0.9273
00
SNP
DRD2 -
(dopamine | 'S12805 | A 0.0296 | 4 556 04333 | 1.085 009751 4 7119
897 83290 5 9
receptor D2)
07
SNP_
rs40754 A- 0.0361 0.0660 0.0792
12 86077 6 1.198 N 1.187 s 1.176
96
SNP_
rs46483 A- 0.0403
18 85687 3 1.126 0.6966 | 1.026 0.0628 1.13
98
SNP_
rs42540 A- 0.0407
99 84272 4 1.207 0.8531 | 1.019 0.2983 | 0.819
10
SNP_
rs12209 A- 0.0026 | 0.896
943 21742 34 5 0.1498 1.087 0.7802 1.033
90
SNP_
rs77510 A- 0.0029 | 0.897
00 21335 12 5 0.1655 | 1.083 0.8959 | 0.9895
32
SNP_
rs15394 A- 0.0051 | 0.848 0.0864
22 86680 26 6 0.2966 1.061 9 1.164
86
SNP_
rs26195 A- 0.0091 | 0.850
45 85279 63 9 0.2974 | 0.9301 0.2484 | 0.9256
69
DTNBP1 SNP_
(dystrobrevin rs27438 A- 0.0124
binding 62 85613 1 0.854 0.1802 | 0.9102 0.253 | 0.9263
protein 1) 79
SNP_
rs12201 A- 0.0157
450 84198 6 1.29 0.206 | 0.8607 0.9028 | 0.9696
04
SNP_
rs10949 A- 0.0162 | 0.867 0.0648
329 87075 6 5 3 1.111 0.6728 | 1.049
35
SNP_
rs19357 A- 0.0177
84 22675 3 1.095 0.9803 | 1.001 0.6846 | 0.9738
50
SNP_
rs47160 A- 0.0185
34 19851 4 1.095 0.5055 | 1.038 0.7948 | 0.9826

99




SNP_

rs17620 A- 0.0346
480 19330 5 1.084 A G 0.9678 1.002 0.8176 | 0.9849
24
SNP_
rs94770 A- 0.0383 0.0309
a4 84633 3 1.197 A G 0.7909 1.027 ) 1.445
50
SNP_
rs26195 A- 0.0457 | 0.882
52 21353 3 4 G A 0.4631 | 0.9286 0.1959 | 0.9133
15
SNP_
rs11759 A- 0.0485 | 0.883
609 18189 3 7 A G 0.5216 | 0.9373 0.1518 | 0.9036
33
u:ﬁ?ﬂﬁd SNP_
s rs94905 A- 0.0105
blnd!ng 46 22528 3 1.108 C T 0.6009 | 0.9665 0.51 1.066
protein 7, 09
brain)
SNP_
rs80374 A- 0.0046
61 83633 35 1.164 G A 0.8976 | 0.9923 0.2313 | 0.9199
44
SNP_
rs80274 A- 0.0052
55 41962 99 1.111 T G 0.5207 1.039 0.4473 | 0.9514
71
SNP_
rs80317 A- 0.0069
30 84950 32 1.156 A G 0.5625 1.035 0.3869 | 0.9446
92
SNP_
rs14358 A- 0.0093 | 0.911
31 19260 22 6 T C 0.1611 0.923 0.6444 | 0.9465
78
SNP_
rs80255 A- 0.0094 | 0.912
75 20271 4 3 C G 0.8209 1.013 0.8643 1.011
17
SNP_
GABRB3 rs11161 A- 0.909
(gamma- 309 19313 0.0115 3 A G 0.5986 | 0.969 0.4669 1.054
aminobutyric 82
acid (GABA) A SNP_
receptor, beta rs11854 A- 0.0164 0.843
3) 349 86316 1 6 A G 0.6549 | 0.9658 0.7989 | 0.9547
33
SNP_
rs45238 A- 0.0201 | 0.889
99 86930 3 1 C T 0.5663 1.033 0.2138 | 0.9219
32
SNP_
rs71796 A- 0.0346
84 19297 6 1.325 G A 0.8919 1.023 0.734 1.033
46
SNP_
rs17669 A- 0.0372
037 20833 9 1.166 C T 0.9597 | 0.9941 0.3895 1.11
84
SNP_
rs50444 A- 0.0377
1 17828 6 1.166 G C 0.9597 | 0.9941 0.2848 1.125
88
SNP_
rs11853 A- 0.0379 | 0.900
743 86930 P 7 NA NA NA NA 0.5088 | 0.9536

33




SNP_

rs27155 A- 0.0437
74 83251 ) 0.888 0.3571 | 1.061 0.5435 | 0.9581
61
SNP_
rs49066 A- 0.0447 | 0.926
80 19577 5 1 0.537 1.035 0.1758 | 0.8967
19
SNP_
rs50095 A- 0.0455 0.0271
1 42469 3 1.159 0.9597 | 0.9941 6 1.446
24
(glssz];te SNP_
rs16859 A- 0.0390 | 0.733
decarbox‘ylase 026 20313 7 1 0.0169 1.67 0.4056 1.265
1 (brain, )
67kDa))
SNP_
rs17745 A- 0.0365
302 85280 9 1.226 0.842 1.024 0.7925 | 0.9585
94
GNB1L SNP_
(guanine rs65185 A-
0.0372 | 1.105 0.8068 | 1.019 0.5807 | 1.038
nucleotide 85 21609
binding 38
protein (G SNP_
protein), beta rs13057 A- 0.0410
polypeptide 1- 910 86445 6 1.219 0.988 1.002 0.6693 | 0.9316
like) 10
SNP_
rs96187 A- 0.0451
05 22701 3 1.073 0.2615 1.066 0.7091 1.026
71
SNP_
rs29628 A- 0.0008
16 20540 031 1.283 0.6909 | 1.046 0.6766 | 1.029
09
SNP_
rs17115 A- 0.0011
481 20972 77 1.147 0.8049 | 1.016 0.4127 | 1.058
02
SNP_
rs43541 A- 0.0014
02 22234 08 1.121 0.3129 1.06 0.1322 | 1.104
59
SNP_
rs37826 A- 0.0021
7 18931 2 1.117 0.4094 | 1.049 0.3423 | 0.9397
GRIA1 03
(glutamate SNP_
rs37523 A- 0.0027
.receptor, ) 41999 71 1.115 0.3887 | 1.052 0.3611 | 1.063
ionotropic, 20
AMPA 1)
SNP_
rs15997 A- 0.0034
1 17969 16 1.153 0.9868 | 1.001 0.2516 | 0.9199
36
SNP_
rs38684 A- 0.0042
1 22136 5 1.109 0.503 1.04 0.6532 | 1.031
09
SNP_
rs91922 A- 0.0044
2 22785 79 1.143 0.9736 | 0.9974 0.2822 1.079
57
SNP_
rs89352 A- 0.0044
3 42238 84 0.893 0.5548 | 1.035 0.6714 | 0.9704

27




SNP_

rs39029 A- 0.0054
9 18795 09 1.116 G A 0.5498 1.035 G A 0.6118 1.035
38
SNP_
rs17448 A- 0.0056
815 43023 02 0.881 C T 0.2305 | 0.9168 C T 0.5129 | 0.8939
04
SNP_
rs49586 A- 0.0064 | 0.897
87 18113 94 6 C T 0.4618 1.044 C T 0.7315 0.976
90
SNP_
rs14612 A- 0.0069
40 19841 38 1.137 T C 0.8186 | 0.9837 T c 0.5249 1.045
09
SNP_
rs26151 A- 0.0073
78 42441 06 1.192 C T 0.7458 1.034 C T 0.9619 1.003
24
SNP_
rs17491 A- 0.0073
606 86596 34 1.346 T C 0.5263 1.082 NA NA NA NA
66
SNP_
rs29628 A- 0.0076
26 21207 M 1.202 T G 0.7465 1.037 T G 0.954 1.004
89
SNP_
rs14612 A- 0.0080 | 0.883
37 19841 4 3 A G 0.8621 1.013 A G 0.3927 | 0.9416
02
SNP_
rs25463 A- 0.0084
31 23137 05 1.226 G A 0.6098 | 0.9376 G A 0.8751 1.011
41
SNP_
rs42852 A- 0.0088 | 0.904
85 20701 27 7 C T 0.9759 1.002 C T 0.2287 | 0.9042
31
SNP_
rs14621 A- 0.0094
13 22618 75 1.186 A G 0.8162 1.024 A G 0.8908 | 0.9907
65
SNP_
rs30032 A- 0.0096
8 21862 12 1.185 T C 0.8204 1.024 T c 0.9974 1
84
SNP_
rs10515 A- 0.0097 | 0.888
671 42113 3 9 C T 0.3501 | 0.935 C T 0.5608 | 0.9022
53
SNP_
rs77171 A- 0.0111
08 23141 1 1.123 T C 0.4099 | 0.9404 T C 0.3423 1.075
08
SNP_
rs17546 A- 0.0111 | 0.889
335 22029 6 9 NA NA NA NA C G 0.9495 | 0.9888
64
SNP_
rs10477 A- 0.0112
042 85654 4 1.159 A C 0.2767 1.073 A C 0.5295 1.048
25
SNP_
rs68825 A- 0.0114 | 0.807 0.0867
89 20113 2 6 A T 5 1.271 A T 0.9391 | 0.9945
52
rs17113 SNP_ 0.0115 | 0.905
771 A- .6 '1 T C 0.7819 1.017 T C 0.1044 | 0.896

22500




52

SNP_

rs49866 A- 0.0117 0.0060

0 42593 9 1.267 0.7231 1.05 A G 37 1.199
91
SNP_

rs31011 A- 0.0120

30 21033 4 1.179 0.7775 1.03 C G 0.6188 | 0.9669
90
SNP_

rs31125 A- 0.0125

30 20811 3 1.174 0.6559 1.046 C T 0.5969 | 0.9655
90
SNP_

rs21991 A- 0.0138

23 20628 5 1.171 0.6902 1.041 G A 0.6887 | 0.9737
69
SNP_

rs12656 A- 0.0141 | 0.856 0.0453

429 85830 6 4 6 1.162 A G 0.1538 | 0.7491
28
SNP_

rs10378 A- 0.0142 | 0.866

92 85238 6 5 0.6462 1.03 G A 0.8518 | 1.012
71
SNP_

rs12655 A- 0.0143

396 17962 6 1.174 0.7835 1.029 G A 0.9829 | 0.9985
36
SNP_

rs29640 A- 0.0155 | 0.893

03 42228 7 1 0.6526 | 1.035 C T 0.3025 | 0.9278
22
SNP_

rs49585 A- 0.0156 | 0.887

49 20396 1 1 0.2034 | 0.9128 T G 0.6243 | 0.9179
35
SNP_

rs16016 A- 0.0156

3 21678 4 1.171 0.7468 | 1.034 T C 0.9216 | 1.007
54
SNP_

rs17113 A- 0.0158

267 84415 4 1.16 0.5309 1.044 T c 0.8966 | 1.012
60
SNP_

rs49585 A- 0.0163 | 0.908 0.0784

61 22724 8 6 0.6682 | 0.9734 G A . 0.7675
53
SNP_

rs13180 A- 0.0165

912 18042 3 1.144 0.8071 | 0.9793 A G 0.57 1.065
03
SNP_

rs65799 A- 0.0167

96 84784 9 1.177 0.5791 | 0.9588 C T 0.2997 | 1.072
05
SNP_

rs10353 A- 0.0170

96 18877 9 0.889 0.172 | 0.9069 A T 0.468 | 0.8818
55
SNP_

rs10515 A- 0.0174

677 86638 6 1.319 0.9902 1.002 NA NA NA NA
66
SNP_

rs29731 A- 0.0183 0.0751

38 23014 4 1.201 0.6503 | 0.9443 T C 6 1.244

41




SNP_

rs29268 A- 0.0184

62 20248 4 0.896 A C 0.919 1.008 A c 0.3746 | 0.9378
99
SNP_

rs17452 A- 0.0188 | 0.910 0.0503

991 20452 2 3 C G 0.7031 | 0.9763 C G 1 0.7463
75
SNP_

rs68770 A- 0.0192 0.821 0.0510

08 42151 3 6 T C 2 1.311 T c 0.951 1.005
03
SNP_

rs73111 A- 0.0197 | 0.899

7 18191 2 6 C T 0.1759 | 0.9074 C T 0.6193 | 0.923
79
SNP_

rs14223 A- 0.0198 | 0.899

41 18073 5 5 T C 0.2034 | 0.9128 T c 0.5064 | 0.8902
80
SNP_

rs29731 A- 0.0198

51 20332 7 1.166 A G 0.7923 1.028 A G 0.9732 | 0.9977
69
SNP_

rs14933 A- 0.0209

83 86638 1 1.158 A G 0.8318 | 0.9846 A G 0.3553 | 0.8959
86
SNP_

rs10039 A- 0.0212 | 0.858

253 83090 7 4 T C 0.1995 | 0.9125 T C 0.5481 | 0.9421
65
SNP_

rs29639 A- 0.0217

40 42769 6 1.149 NA NA NA NA NA NA NA NA
68
SNP_

rs19462 A- 0.0234 | 0.901

24 20767 9 4 T C 0.1993 | 0.9114 T C 0.5857 | 0.9251
05
SNP_

rs17115 A- 0.0242

298 19841 9 1.12 G T 0.5341 | 0.9489 G T 0.1176 | 1.159
01
SNP_

rs10252 A- 0.0256

60 20512 9 1.102 T A 0.7588 | 0.9782 T A 0.6112 | 1.036
03
SNP_

rs17566 A- 0.0268 | 0.914 0.0457

146 42343 9 5 G C 0.8845 1.009 G C p 0.7936
97
SNP_

rs17525 A- 0.0279

192 19179 1 1.118 T C 0.5828 | 0.9546 T C 0.4124 | 1.194
66
SNP_

rs18642 A- 0.0279 0.0517

05 21335 7 1.083 G A 4 0.8913 G A 0.7319 | 0.9628
62
SNP_

rs39232 A- 0.0281 | 0.908 0.0324

09 42756 3 7 T A 0.6029 | 0.9678 T A 6 0.8179
72
SNP_

rs49585 A- 0.0300 | 0.909

60 18009 6 7 G A 0.4645 | 0.955 G A 0.0424 | 0.8278
57

rs17546 SNP_ 0.0311 | 0.865

205 A- '4 '9 G A 0.2527 | 0.9208 G A 0.2098 | 0.8701

84598




74

SNP_

rs17566 A- 0.0315 | 0.916 0.0970

118 19377 6 9 0.9707 | 1.002 ; 0.8268
26
SNP_

rs49585 A- 0.0318

56 82984 3 1.23 0.7937 | 0.9711 0.1124 | 0.8323
71
SNP_

rs10515 A- 0.0320 | 0.910

672 19840 9 6 0.886 | 0.9903 0.2005 | 0.8647
57
SNP_

rs43986 A- 0.0324 | 0.917 0.0404

24 22647 9 6 0.4094 | 0.9491 6 0.8599
25
SNP_

rs30032 A- 0.0325

9 20834 3 1.101 0.9552 1.004 0.3083 | 0.9273
61
SNP_

rs30827 A- 0.0327

1 21724 ) 1.101 0.9303 1.006 0.1332 | 0.8967
10
SNP_

rs21777 A- 0.0327

1 18685 3 1.101 0.9569 1.004 0.3083 | 0.9273
71
SNP_

rs17113 A- 0.0341

732 20436 9 1.195 0.5249 1.098 0.7036 1.047
88
SNP_

rs15424 A- 0.0346 | 0.875

85 84171 9 7 0.3112 1.074 0.4365 | 0.9303
87
SNP_

rs15976 A- 0.0347

0 17982 7 1.1 0.9471 | 0.9952 0.5496 | 0.9617
62
SNP_

rs14223 A- 0.0368

37 18937 3 1.094 0.3787 1.063 0.7909 | 0.9796
85
SNP_

rs15996 A- 0.0376

9 21608 4 1.098 0.8992 1.009 0.138 | 0.8978
42
SNP_

rs17568 A- 0.0395 | 0.875 0.0835

427 83684 5 4 0.3828 | 0.9401 . 0.7454
56
SNP_

rs28695 A- 0.0409 | 0.928

6 19512 9 4 0.3225 1.059 0.807 1.019
09
SNP_

rs11951 A- 0.0412

398 83309 9 1.25 0.5021 1.086 0.482 1.072
22
SNP_

rs30033 A- 0.0415

0 19840 7 1.096 0.9423 | 0.9947 0.9905 1.001
73
SNP_

rs17113 A- 0.0436

236 18462 3 1.091 0.4456 1.055 0.6867 | 0.9668

95




SNP_

rs28696 A- 0.0444 0.0292
9 87120 4 1.109 T C 4 0.8815 T c 0.6371 1.033
67
SNP_
rs17451 A- 0.0470 0.915 0.0759
310 42450 5 9 G C 0.5431 | 0.9623 G c 3 0.7658
46
SNP_
rs77023 A- 0.0470
36 20912 9 1.08 A C 0.8426 1.013 A C 0.4821 1.054
82
SNP_
rs41457 A- 0.0490
44 18561 9 1.234 NA NA NA NA NA NA NA NA
13
SNP_
rs28696 A- 0.0498 0.931
7 21084 3 3 A C 0.3181 1.06 A C 0.9261 | 0.9932
04
SNP_
rs64909 A- 0.0279 0.870 0.0353 0.0256
3 83397 ) 3 C G 1 1.127 C G 1 1.182
GRIA4 o6
(glutamate SNP_
rs13754 A- 0.0354 0.778 0.0410
) receptorf 23 84226 ) 3 T A 7 1.301 T A 0.8884 1.017
ionotrophic, 87
AMPA 4)
SNP_
rs17104 A- 0.0360
589 83396 9 1.288 T C 0.1631 | 0.8254 NA NA NA NA
98
SNP_
rs43637 A- 0.0015 0.842 0.0698
03 83760 69 2 C T 3 1.113 C T 0.6449 | 0.9679
97
SNP_
rs10845 A- 0.0062 0.851
359 87098 13 9 G A 0.1573 1.098 G A 0.4928 | 0.9419
53
SNP_
rs10772 A- 0.884
719 19403 0.0072 3 A G 0.2784 1.077 A G 0.904 0.9878
01
SNP_
rs12809 A- 0.0089 0.908
196 18603 59 9 G A 0.63 0.9723 G A 0.6795 1.047
79
SNP.
GRIN2B -
rs11055 A- 0.0139 0.917
(glutamate 594 20576 4 1 G A 0.7284 | 0.9806 G A 0.5463 1.042
receptor, 52
ionotropic, N-
methyl D- SNP_
rs39240 A- 0.0148 0.832
aspartate 2B) 22 36454 1 6 G A 0.6964 | 0.9727 G A 0.2343 | 0.8414
95
SNP_
rs11055 A- 0.0171 0.919
792 42521 9 3 A G 0.7977 1.015 A G 0.4974 1.065
60
SNP_
rs73148 A- 0.0197
30 21353 9 1.188 A T 0.8097 1.029 A T 0.7632 | 0.9804
14
SNP_
rs12371 A- 0.0210
702 22147 5 1.116 G C 0.1355 1.124 G c 0.8426 | 0.9803
62
SNP_
522245 A- Q0§14 0.922 c T | 0.8446 | 0.9889 c T | 05474 | 0953

21652
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SNP_

rs79704 A- 0.0221 | 0.843

07 20570 1 4 0.4744 | 0.9547 0.2822 | 0.9297
07
SNP_

rs11055 A- 0.836

830 83753 0.0229 9 0.4181 | 1.069 0.3167 | 1.164
82
SNP_

rs11055 A- 0.0236

597 18894 9 1.083 0.5329 | 0.9654 0.1874 | 0.9144
50
SNP_

rs21987 A- 0.0246 | 0.893

2 20969 6 9 0.907 1.009 0.8656 | 1.012
85
SNP_

rs11055 A- 0.0250 | 0.923

664 18333 1 7 0.874 0.991 0.5168 | 0.9494
55
SNP_

rs22844 A- 0.0261 | 0.887 0.0184

28 21759 1 5 9 0.8112 0.7955 | 0.9776
64
SNP_

rs10492 A- 0.0313

134 42724 3 0.923 0.3173 | 0.9422 0.617 1.067
33
SNP_

rs11055 A- 0.0372 | 0.888

930 86762 4 4 0.5654 1.037 0.6144 | 1.037
41
SNP_

rs22681 A- 0.0376 | 0.889 0.0174

35 42967 3 5 9 0.8018 0.7824 | 0.9759
29
SNP_

rs11055 A- 0.0381 | 0.923

595 42743 2 5 0.7232 | 0.9802 0.4647 1.052
30
SNP_

rs23002 A- 0.0393

68 19240 1 1.243 0.9241 | 1.018 0.2097 | 1.155
51
SNP_

rs16909 A- 0.0398 | 0.839

619 20535 6 8 0.4416 1.104 0.6384 1.081
92
SNP_

rs22681 A- 0.0399 0.0310 0.0097

33 42873 1 1.081 1 1.14 64 1.215
49
SNP_

rs73060 A- 0.0400 | 0.901

14 86561 4 7 0.2675 | 0.9392 0.7119 | 0.9741
95
SNP_

rs23002 A- 0.0420 | 0.893

52 86970 1 7 0.563 1.036 0.193 1.103
84
SNP_

rs21931 A- 0.0438 | 0.913

50 21723 9 3 0.2582 0.92 0.2428 | 1.081
98
SNP_

rs79701 A- 0.0449 | 0.913

44 20344 8 5 0.3701 | 0.9358 0.2939 1.073

27




SNP_

rs10772 A- 0.0486
769 85118 9 1.107 0.6875 | 0.9766 0.2365 | 0.8976
18
SNP_
rs21990 A- 0.0492
4 43032 ) 1.078 0.5016 | 1.039 0.1279 | 1.106
94
SNP_
rs10845 A- 0.0494
826 20344 1 1.074 0.7343 | 0.9804 0.2197 | 0.9194
99
SNP_
rs99225 A- 0.0025
9 22754 59 1.191 0.6651 | 0.9591 0.7554 | 1.023
45
SNP_
rs73967 A- 0.0028
02 42524 36 1.295 0.4099 | 0.9222 0.2545 | 1.085
96
SNP_
rs11020 A- 0.0029
781 19539 38 1.211 0.6162 | 0.9521 0.1885 1.098
06
SNP_
rs12362 A- 0.0036
135 84558 54 1.326 0.371 | 0.9053 0.8322 | 0.9851
19
SNP_
rs12279 A- 0.0041
598 83761 29 1.731 0.3522 | 0.8182 0.6363 | 0.9526
76
SNP_
rs10831 A- 0.0042
155 85119 65 1.299 0.6108 | 0.9477 0.3842 | 0.9376
77
SNP_
rs11020 A- 0.0060
748 42072 1 1.191 0.4184 | 0.9249 0.4082 1.061
GRM5 07
(glutamate SNP_
receptor, rs12802 A- 0.0069
metabotropic 146 21203 36 117 0.4651 | 0.9318 0.4002 | 1.062
5) 93
SNP_
rs98201 A- 0.0084
0 21220 84 1.166 0.4665 | 0.9322 0.3426 1.07
98
SNP_
rs44881 A-
99 21703 0.01 1.24 0.5411 | 0.943 0.9429 | 1.005
70
SNP_
rs30876 A- 0.0133 0.0677
5 42822 3 1377 9 0.6904 0.1426 | 1.159
58
SNP_
rs65654 A- 0.0197
4 84031 3 1.57 0.4594 | 1.159 0.7231 | 0.9616
43
SNP_
rs54127 A- 0.0218 0.0492
9 83392 9 1.349 0.8657 | 1.025 9 0.8491
69
SNP_
rs17770 A- 0.0237
948 86037 5 1.268 0.2719 | 0.8726 0.3906 | 0.8735
15
SNP
rs41352 - 0.0245 | 0.887
345 A- ) ) 0.6123 | 0.9605 0.2955 1.26

18655




05

SNP_
rs16914 A- 0.0275
531 84585 4 1.479 T C 0.5973 1.125 NA NA NA NA
60
SNP_
rs18464 A- 0.0304 0.0012
75 84659 7 1.556 A T 0.8852 | 0.9659 A T 63 0.3769
06
SNP_
rs16756 A- 0.0318
9 84633 7 1.477 A G 0.82 1.044 A G 0.9353 | 0.9905
70
SNP_
rs25134 A- 0.0320 0.0241
17 22998 3 1.315 G C 7 0.6273 G C 0.5045 1.065
74
SNP_
rs10830 A- 0.0323
770 85541 3 1.155 C T 0.1105 0.884 C T 0.3671 1.074
15
SNP_
rs17011 A- 0.0339 0.0184
0 18469 8 1.299 A T ) 0.6354 A T | 02289 | 1.119
02
SNP_
rs12273 A- 0.0354 | 0.897
907 42609 9 5 A G 0.8465 | 0.9853 A G 0.3894 | 0.9305
80
SNP_
rs10830 A- 0.0374
909 42009 g 1.076 G A 0.8016 0.986 G A 0.8268 1.022
02
SNP_
rs30876 A- 0.0398 0.0269
6 42541 2 1.311 A G 1 0.6286 A G 0.3443 1.093
97
SNP_
rs11020 A- 0.0440
528 83113 2 1.568 G A 0.8958 1.031 NA NA NA NA
66
SNP_
GSN rs12376 A- 0.0473 0.0365
(gelsolin) 078 84583 9 1.26 T C 5 1.361 T c 0.2964 1.133
22
SNP_
rs11242 A- 8.67E-
025 42597 05 2.326 NA NA NA NA NA NA NA NA
92
SNP_
rs12653 A- 0.0005
613 18650 705 2.098 C T 0.1253 1.435 C T 0.1573 | 0.8863
03
SNP_
HINT1 r56888688 87%_72 0'(;(;43 1.196 G T 0.4069 1.048 T G 0.5225 | 0.9451
(histidine triad 40
nucleotide SNP
binding rs77167 |  A- 0.0055 0.0964
tein 1 g : . E ] ‘ ‘
protein 1) 02 22859 13 1.444 A T - 1.281 A T 0.5098 | 0.9539
06
SNP_
rs77372 A- 0.0127
08 42363 3 1.248 A G 0.1536 1.158 G A 0.5814 | 0.9632
53
SNP_
rs68601 A- 0.0145 0.0829 0.0765
80 | 21256 3 | 1168 ¢ T 7 | 1194 ¢ T . | 08874

25




SNP_

rs68806 A- 0.0148 0.0515
04 83512 1 1.809 1 1.676 G A 0.1697 | 0.8894
26
SNP_
rs17640 A- 0.0155
142 85109 6 1.416 0.5952 | 0.9186 G C 0.1223 | 0.8612
42
SNP_
rs77341 A- 0.0292 0.0086
77 83272 3 1.299 37 1.436 C T 0.6232 | 1.033
41
SNP_
rs13636 A- 0.0484
96 86651 5 1.119 0.2637 | 1.073 T C 0.2559 | 0.9122
72
HSPA1B SNP_
(heat shock rs27639 A- 0.0009 | 0.883 0.0657
70kDa protein 79 18679 003 1 3 0.8954 C T 0.0987 1.121
1B) 08
SNP_
rs79851 A- 0.0201 0.0835
55 18591 4 1.154 3 0.8389 C T 0.2674 1.107
37
SNP_
rs18050 A- 0.0238
55 85368 7 1.462 0.5468 1.121 NA NA NA NA
HTR2A 95
(5- SNP_
hydroxytrypta rs95956 A- 0.0327
mine 13 84438 5 1.485 0.2172 1.277 C G 0.2813 | 0.9154
(serotonin) 24
receptor 2A) SNP_
rs13264 A- 0.0441 | 0.810
69 85367 3 9 0.9177 | 0.9883 A G 0.6157 | 0.9662
48
SNP_
rs95346 A- 0.0473
96 83947 5 0.813 0.9971 1 C T 0.6766 | 0.9729
79
SNP_
rs37727 A- 0.0062
56 22948 35 1.22 0.6004 | 1.059 C A 0.7724 | 0.9685
14
SNP_
rs37727 A- 0.0094
51 85125 16 1.27 0.4302 | 1.089 T C 0.2524 | 0.9193
82
SNP_
rs37727 A- 0.0137
53 18159 4 1.18 0.6004 | 1.059 T C 0.6774 | 0.9552
16
SNP_
rs16835 A- 0.0273 0.0399
KAESN 783 82960 7 1.184 4 0.8328 T C 0.4101 | 1.077
(kalirin, 14
RhoGEF
kinase) rs37727 Sﬁp_ 0.0293 | 0.820
90 84627 8 4 0.7057 | 0.9631 A C 0.2114 | 1.089
80
SNP_
rs67664 A- 0.0377 | 0.727
33 87003 6 2 0.3458 | 1.157 A G 0.2018 | 1.136
70
SNP_
rs13087 A- 0.0389
377 82948 3 1.112 0.6843 | 0.9767 G T 0.9775 | 0.9981
64
rs16835 SNP_ 0.0398 0.0927
412 A- '1 1.231 0.8354 | 0.9757 A T '8 0.6801

84816




23

SNP_
rs33330 A- 0.877
7 86232 0.0438 7 0.7827 | 0.9803 T A 0.6632 | 0.9681
59
SNP_
rs76219 A- 0.0478 0.0449
76 84519 5 1.165 5 0.8366 T c 0.7688 | 1.024
38
SNP_
rs68647 A- 0.0053
93 41568 74 1.348 0.9752 | 0.9965 C T 0.4832 | 1.077
21
SNP_
rs18522 A- 0.0153
KIF2A 7 85248 4 1.148 0.4179 | 0.9498 G C 0.8106 | 1.016
(kinesin heavy 23
chain member SNP_
2p) rs41456 A- 0.0276
8 22035 1 1.116 0.4581 | 0.9472 T C 0.3719 1.064
52
SNP_
rs18766 A- 0.0485 | 0.862
83 21733 3 9 0.7886 | 0.9778 G A 0.4592 | 0.9139
82
SNP_
rs12959 A- 0.0100
006 42362 ) 1.122 0.7617 | 1.021 T C 0.7293 | 0.9426
21
SNP_
rs48909 A- 0.0237 | 0.874
10 84797 7 4 0.595 | 0.9652 A G 0.9961 | 1.001
64
SNP
MBP -
. . rs99661 A- 0.0258
(mytretl’l:e:;sm 6 20434 ) 1.126 0.1442 1.123 T A 0.9557 | 0.996
P 18
SNP_
rs12956 A- 0.0327 | 0.871 0.0856
305 84978 8 4 7 1.13 A G 0.891 | 0.9853
81
SNP_
rs39001 A- 0.0376 | 0.895
76 86224 6 7 0.6998 | 1.023 G A 0.6813 | 0.9724
19
SNP_
rs17080 A- 0.0035
a4 42168 29 1.301 0.8484 | 1.027 NA NA NA NA
30
SNP_
rs17681 A- 0.0052
98 22269 6 1.193 0.9057 | 1.008 G A 0.4108 | 1.056
01
SNP_
MOBP rs17080 A- 0.0057
(myelin- 99 84967 77 1.397 0.9926 | 0.9987 T c 0.7615 | 0.9732
associated 95
oligodendrocy SNP_
te basic rs17681 A-
protein) a1 21417 0.0062 | 1.279 0.9603 | 1.007 G A 0.9911 | 1.001
39
SNP_
rs16096 A- 0.0083
46 42785 5 1.122 0.9751 | 0.9978 A G 0.4794 | 0.9543
44
SNP_
rs17079 A- 0.0083
56 19117 52 1.118 0.8633 | 0.9884 G A 0.2213 | 0.9156

69




SNP_

rs50050 A- 0.0098
7 19724 2 1.119 T C 0.9631 | 0.9968 C T 0.5145 | 0.9578
36
SNP_
rs16096 A- 0.0106
47 21472 9 1.118 T C 0.9373 | 0.9945 C T 0.4449 | 0.9507
45
SNP_
rs17681 A- 0.0143
58 18158 9 1.113 C T 0.9812 1.002 T C 0.7246 | 0.977
72
SNP_
rs16292 A- 0.0154
82 42613 3 1.112 C T 0.9806 | 0.9983 T C 0.5021 | 0.9564
71
SNP_
rs17079 A- 0.0178
58 19347 5 1.11 T C 0.9583 | 0.9963 T C 0.1871 1.09
56
SNP_
rs17079 A- 0.0210
60 18320 1 1.107 C T 0.9871 1.001 C T 0.2098 1.085
07
SNP_
rs53886 A- 0.0212
7 20980 3 1.322 NA NA NA NA NA NA NA NA
43
SNP_
rs22332 A- 0.0238 | 0.888
04 86185 4 3 T C 0.2172 | 1.076 T C 0.2393 | 0.8788
01
SNP_
rs76312 A- 0.0240
17 42890 1 1.104 A T 0.9982 | 0.9998 A T 0.2098 | 1.085
48
SNP_
rs65990 A- 0.0368
28 19724 5 1.101 G C 0.8438 | 0.9867 C G 0.1709 | 0.9059
34
SNP_
rs15275 A- 0.0414 | 0.915
58 21934 4 ) T G 0.3689 | 0.9442 T G 0.9606 | 1.003
42
SNP_
rs98689 A- 0.0430 | 0.922
41 42634 3 6 C T 0.4113 | 0.949 C T 0.9901 | 0.9992
58
SNP_
rs98351 A-
43 84250 0.0478 | 1.141 T C 0.9663 1.003 T c 0.1456 | 1.131
66
SNP_
rs11214 A- 0.0039
441 21399 17 1.159 T A 0.1322 1.091 T A 0.3003 | 1.072
90
SNP_
rs19407 A- 0.0059
33 83435 25 1.15 T C 0.1477 | 1.087 T C 0.1693 | 1.096
NCAM1 37
(neural cell SNP_
. rs10789 A- 0.0077
adhesion 394 22197 69 1.124 C T 0.9332 | 0.9941 C T 0.3894 1.06
molecule 1)
75
SNP_
rs71267 A- 0.0078 0.0854
48 84031 06 1.147 C T 5 1.104 C T 0.5581 | 1.039
97
SNP_
rsigm A- 0’3384 1.143 G A 0.301 | 0.9198 G A 0.4561 | 1.102

21310




99

SNP_

rs19451 A- 0.0095

16 19555 07 1.124 0.8566 | 0.9873 0.7343 | 0.9777
76
SNP_

rs10750 A- 0.0097

016 42863 05 1.141 0.2118 | 1.074 0.0375 | 1.146
66
SNP_

rs19451 A- 0.0098

01 42376 % 1.12 0.792 | 0.9815 0.9784 | 0.9982
18
SNP_

rs10891 A- 0.0099 0.0457

434 21801 37 1.104 1 0.8926 0.5908 | 1.051
92
SNP_

rs10891 A- 0.0109

379 19365 7 1.13 0.9596 1.004 0.686 1.028
52
SNP_

rs79483 A- 0.0114

94 22907 4 1.118 0.9983 | 0.9998 0.6227 | 1.036
82
SNP_

rs17598 A- 0.0126

303 86497 7 1.157 0.4316 | 0.9484 0.1704 | 0.7953
61
SNP_

rs10891 A- 0.0134

385 42354 7 1.115 0.9233 1.007 0.5602 | 1.039
82
SNP_

rs11214 A- 0.0142

240 22277 1 1.115 0.5921 | 0.9624 0.6643 1.029
69
SNP_

rs49378 A- 0.0158

70 42930 4 1.103 0.1741 1.085 0.5323 1.05
42
SNP_

rs10891 A- 0.0169

375 83477 5 0.882 0.5726 | 0.9675 0.6435 | 1.033
53
SNP_

rs17582 A- 0.0216 0.0078

738 86312 7 1215 65 1.247 0.1582 | 1.337
51
SNP_

rs10068 A- 0.0234 0.0229

26 42593 1 1.095 0.1912 | 0.9175 1 0.698
17
SNP_

rs11214 A- 0.0292

468 21890 ) 1.091 0.5043 | 0.9581 0.2037 | 1.112
86
SNP_

rs22124 A- 0.0303 0.0680

50 42822 3 1.079 0.1273 | 1.09 . 1.127
85
SNP_

rs65893 A- 0.0308

54 20303 4 1.08 0.1436 | 1.088 0.1057 | 1.114
49
SNP_

rs79263 A- 0.0313

12 42705 2 1.08 0.1285 1.091 0.1134 1.111

95




SNP_

rs18929 A- 0.0320
83 18146 1 1.08 0.1953 1.077 0.1109 1.112
03
SNP_
rs19407 A- 0.0332
24 22681 5 1.079 0.1296 | 1.091 0.1239 | 1.108
49
SNP_
rs71054 A- 0.0341 0.0770 0.0426
62 19340 5 1.085 6 1.106 1 0.8728
06
SNP_
rs10891 A-
487 42429 0.0347 | 1.085 0.1353 | 1.089 0.129 1.106
90
SNP_
rs38028 A- 0.0350 0.0979
47 20901 4 1.078 0.1613 1.084 s 1.117
94
SNP_
rs17114 A- 0.0351 0.0122
687 21201 3 1.194 3 1.229 0.1324 1.151
76
SNP_
rs22124 A- 0.0355
49 22245 6 1.078 0.1296 | 1.091 0.1379 | 1.104
08
SNP_
rs11214 A- 0.0410
469 18120 3 1.083 0.1223 1.093 0.1134 1.111
77
SNP_
rs20542 A- 0.0465 | 0.932
66 22645 8 5 0.3028 | 0.9437 0.6808 1.038
74
SNP_
rs11214 A- 0.0494 | 0.921
331 18953 1 2 0.6475 | 1.031 0.8425 | 0.9861
52
SNP_
rs71160 A- 0.0496 | 0.930
22 42859 5 4 0.3162 | 0.9429 0.9455 | 0.9945
80
SNP_
rs10502 A- 0.0496
163 20193 7 1.081 0.6345 0.97 0.4475 | 1.063
02
SNP_
rs44472 A- 0.0499 | 0.932 0.0348
04 20933 2 4 9 1.128 0.2615 | 0.9014
07
SNP_
rs80848 A- 0.0032 | 0.866
22 19528 43 3 0.676 0.9686 0.1669 1.124
87
SNP_
rs17855 A- 0.0060 | 0.823
60 84821 02 2 0.884 | 0.9888 0.6124 | 1.063
NDUFV2
NADH 69
dehgdrogenas SNP_
Lo rs17847 A- 0.0087 | 0.879
e (ublqum?ne) 73 43003 68 1 0.8543 | 1.014 0.9226 | 1.008
flavoprotein 2, 74
24kDa)
SNP_
rs20321 A- 0.0095 | 0.895
61 18764 35 5 0.129 | 0.9089 0.2687 | 0.8907
43
SNP_
r5127838 A- 0'03130 0.885 0.8727 | 0.9877 0.107 | 0.7447

42304




76

SNP_
rs11081 A- 0.0150 | 0.882 0.0596
448 83059 1 6 2 0.8973 A c 0.9962 | 0.9997
85
SNP_
rs15733 A- 0.0157 | 0.873
21 84307 2 4 0.1199 | 0.9069 C A 0.6579 | 1.037
18
SNP_
rs98785 A- 0.0297 | 0.889
0 84307 6 4 0.1845 | 0.9229 C T 0.9628 | 1.004
19
SNP_
rs16954 A- 0.0368 0.0239
628 85840 1 1.151 4 1.19 C T 0.3048 1.082
55
SNP_
rs11081 A- 0.0438 0.903 0.0440
446 85878 5 9 9 0.8929 A G 0.8226 | 0.9849
34
SNP_
rs80926 A- 0.901
61 86543 0.0466 6 0.4177 | 0.9542 G A 0.8053 | 0.984
63
SNP_
rs12465 A- 0.0006 | 0.746
886 84963 887 3 0.3023 | 0.9256 A C 0.9872 | 0.9988
75
SNP_
rs84322 A- 0.0042 | 0.903
9 42623 9 4 0.9095 | 0.9935 T C 0.8056 | 1.016
25
SNP_
rs84322 A- 0.0049 | 0.904
0 19136 04 6 0.9623 | 0.9973 A G 0.7517 | 1.021
86
SNP_
rs27888 A- 0.0051 | 0.902
1 19022 53 9 0.3281 | 1.059 T C 0.9658 | 0.9971
38
SNP_
rs11888 A- 0.0052
593 21527 77 1.177 0.9065 | 0.9922 NA NA NA NA
NR4A2 68
(nuclear SNP_
receptor rs26917 A- 0.0053
subfamily 4, 26 19081 91 1.104 0.5218 | 1.037 G c 0.9745 | 1.002
group A, 25
member 2) SNP_
rs17226 A- 0.0059 0.0970
595 19005 57 1.111 0.8142 | 1.014 A G 5 0.8058
57
SNP_
rs26917 A- 0.0062
75 19654 09 1.101 0.7726 | 0.9838 T c 0.8761 | 0.9899
92
SNP_
rs12991 A- 0.0070
533 19088 67 1.101 0.502 1.039 A G 0.9207 | 1.007
20
SNP_
rs26774 A- 0.0070
79 21425 7 1.099 0.766 | 0.9834 C G 0.9224 | 1.006
60
SNP_
rs26917 A- 0.0124 | 0.914
87 42028 8 7 0.8501 | 0.9892 T C 0.8852 1.01

06




SNP_

rs84321 A- 0.0130 | 0.908
9 20811 4 3 A T 0.6852 1.026 A T 0.8787 | 1.011
07
SNP_
rs13016 A- 0.0154 | 0.882
588 85599 9 5 G A 0.684 | 0.9768 G A 0.7593 | 0.9792
79
SNP_
rs13162 A- 0.0158 | 0.883
93 85761 3 4 C T 0.7088 | 0.9788 C T 0.9317 | 0.9942
85
SNP_
rs14020 A- 0.0164 0.0153
70 18248 6 1.106 G C 1 0.8458 G C 0.9477 | 1.009
20
SNP_
rs23507 A-
96 22941 0.017 1.139 A T 0.8914 1.012 A T 0.2271 1.085
26
SNP_
rs10175 A- 0.0172 | 0.731
502 85369 4 1 C G 0.719 0.9522 NA NA NA NA
45
SNP_
rs16839 A- 0.0236
220 18719 1 1.105 C G 0.3933 1.063 C G 0.5016 | 0.9007
45
SNP_
rs75714 A- 0.0252 | 0.920
52 20715 2 9 C T 0.5375 1.038 C T 0.8414 | 1.014
53
SNP_
rs15284 A- 0.0338 | 0.919
54 20863 3 7 C T 0.6509 | 0.9719 C T 0.65 0.9698
64
SNP_
rs75647 A- 0.0377 | 0.924
47 18527 1 3 G C 0.292 | 0.9379 G C 0.4007 | 0.9406
34
SNP_
rs21339 A-
72 21298 0.0387 | 1.121 A G 0.7282 1.032 A G 0.8192 | 1.017
69
SNP_
rs13426 A- 0.0427 | 0.880
050 19091 3 3 A G 0.7535 | 0.9692 A G 0.7946 1.02
56
SNP_
rs10250 A- 0.0062
083 83167 34 1.211 NA NA NA NA NA NA NA NA
61
SNP_
rs77908 A- 0.0067
75 22257 81 1.12 C G 0.3568 | 0.9446 C G 0.9105 | 1.009
17
SNP_
rs13227 A- 0.0086
NRCAM 236 42241 82 1.116 C T 0.2751 | 0.9349 C T 0.7302 | 1.026
(neuronal cell 03
adhesion
molecule) SNP_
rs10226 A- 0.0129
935 18473 3 1.131 A G 0.3372 | 0.9387 A G 0.6992 | 1.028
08
SNP_
rs19907 A-
11 86683 0.0146 | 1.162 G A 0.2085 | 0.9291 G A 0.2772 | 1.076
30
SNP_
nggoo A- Q0;49 1.107 T c 0.2749 | 0.935 T C 0.8671 | 0.9874

22662




83

SNP_
rs13238 A- 0.0171
841 18941 7 1.104 0.3666 | 0.9461 T c 0.9852 1.001
76
SNP_
rs41422 A- 0.0174 | 0.912 0.0302
84 21618 3 4 9 1.145 T c 0.6592 | 0.9551
17
SNP_
rs19907 A- 0.0192 | 0.880
13 84174 2 2 0.4582 1.046 T c 0.0882 | 0.8856
69
SNP_
rs13225 A- 0.0196 0.0770
168 22163 9 0.914 9 1.116 T G 0.6979 | 0.9687
66
SNP_
rs21112 A- 0.0223 | 0.915 0.0810
02 19272 2 7 9 1.114 T C 0.9223 | 0.9897
23
SNP_
rs10953 A- 0.0240
569 18001 6 1.093 0.4061 | 0.9524 A G 0.69 1.029
20
SNP_
rs13230 A- 0.0255 | 0.914
316 42518 4 4 0.9613 1.003 C G 0.4867 1.054
08
SNP_
rs77958 A- 0.0290 0.0178
34 85845 6 1.16 ) 0.8607 A T 0.9197 | 0.9931
93
SNP_
rs22842 A- 0.0355 0.0531
84 83706 3 1.122 5 0.8891 T C 0.4684 | 1.049
96
SNP_
rs20235 A- 0.0382
03 84549 3 1.115 0.1383 | 0.9174 C G 0.8433 | 0.987
24
SNP_
rs77923 A- 0.0388
21 19536 3 1.079 0.4232 | 0.9537 NA NA NA NA
59
SNP_
rs11974 A- 0.0392
528 23044 4 0.749 0.994 1.001 A G 0.3835 | 0.9294
15
SNP_
rs12673 A- 0.0425 | 0.916
676 22876 3 3 0.4382 1.055 T G 0.9481 1.008
36
SNP_
rs16872 A- 0.0426
495 19908 3 0.916 0.6724 1.03 G T 0.9333 1.009
55
SNP_
rs12705 A- 0.0468
470 18398 3 1.089 0.3708 | 0.946 T c 0.8115 1.018
23
SNP_
rs17155 A- 0.0480 0.0091
335 20586 1 1.089 56 0.8498 A T 0.5968 1.035
54
SNP_
NRG1 rs11580 A- 0.0017 | 0.830
(neuregulin 1) 01 83487 31 5 0.9317 | 0.9943 NA NA NA NA

54




SNP_

rs12541 A- 0.0022 | 0.834
516 82820 85 5 T C 0.6038 1.035 T C 0.1012 1.114
06
SNP_
rs95400 A- 0.0031 | 0.839 0.0459
9 82820 91 1 C T 0.9254 | 1.006 C T 1 1.172
07
SNP_
rs16879 A- 0.0077 0.0512
809 21877 58 1.14 T C 3 1.17 T C 0.9974 | 1.001
55
SNP_
rs11780 A- 0.0124 | 0.881 0.0055
004 82815 5 9 C T 0.7865 | 0.9849 C T 21 0.7685
83
SNP_
rs45357 A- 0.0143 0.879
04 83618 2 4 G A 0.9511 | 0.9964 G A 0.4197 | 0.9391
99
SNP_
rs11991 A- 0.913 0.0975
036 | 21105 0.0155 6 T c 9 1.103 T C | 03499 | 1.068
14
SNP_
rs25532 A- 0.0162 | 0.886
50 85862 5 3 G A 0.4646 | 0.9597 A G 0.3331 | 0.9338
62
SNP_
rs70128 A- 0.0162 | 0.596
73 83742 9 3 T C 0.5199 | 1.159 T C 0.3871 | 1.099
15
SNP_
rs42680 A-
90 21716 0.0193 | 1.089 T C 0.1928 | 1.078 T C 0.1154 | 0.8876
75
SNP_
rs40353 A- 0.862
23 82815 0.0209 3 G A 0.8777 | 0.9913 A G 0.5621 | 0.9628
78
SNP_
rs13439 A- 0.0213 | 0.890
388 86441 9 6 A G 0.4771 | 0.9608 A G 0.9873 | 1.001
06
SNP_
rs12681 A- 0.0214 0.0718 0.0059
411 | 22553 7 | o8 G ¢ s | 1 G C 03 | 07455
15
SNP_
rs10954 A- 0.0217 | 0.890
863 18265 1 9 T C 0.624 | 0.9727 T C 0.1549 | 0.8722
69
SNP_
rs10954 A- 0.0248
864 85807 ) 1.119 C G 0.9123 | 0.9938 ¢ G 0.7732 | 0.9805
28
SNP_
rs78188 A- 0.0268
21 19929 7 1.088 G A 0.7514 1.02 G A 0.6146 | 1.034
51
SNP_
rs11775 A- 0.0289 | 0.883
675 42871 9 ) T C 0.3961 | 0.9484 T C 0.3581 | 0.9278
61
SNP_
rs11506 A- 0.0324
112 18379 4 1.147 NA NA NA NA NA NA NA NA
24
SNP_
B§§§4 A- Q9:73 1.123 NA NA NA NA NA NA NA NA

42888




25

SNP_
rs17642 A- 0.0409 | 0.861
273 42479 1 2 0.2944 | 0.9195 0.011 | 0.6327
08
SNP_
rs38471 A- 0.0425 | 0.897
31 82815 7 7 0.749 0.9812 0.4233 | 0.9476
79
SNP_
rs13272 A- 0.0439
876 17999 3 0.92 0.3236 | 0.9354 0.1936 | 0.8115
24
SNP_
rs18982 A- 0.0445 | 0.929
10 18734 2 2 0.5688 1.034 0.6137 1.037
92
SNP_
rs78457 A- 0.0453 | 0.800
47 22557 1 7 0.6203 | 0.9201 0.1666 1.194
19
SNP_
rs16233 A- 0.0465
72 85146 6 0.898 0.411 0.9516 0.3237 1.07
72
SNP_
rs65881 A- 0.0030
03 42246 0 1.11 0.3473 | 1.054 0.4673 | 0.9405
97
SNP_
rs13211 A- 0.0031
72 21779 77 1.109 0.4168 1.047 0.5122 | 0.9463
20
SNP_
rs50295 A- 0.0038
8 18662 79 1.107 0.2563 1.067 0.6121 1.036
28
SNP_
rs66880 A- 0.0040
20 42969 13 1.106 0.4658 1.042 0.5053 | 0.9454
93
SNP_
rs67004 A- 0.0043
03 21355 27 1.106 0.1924 1.077 0.1392 0.902
31
PDE4B SNP_
(phosphodiest | rs53685 A- 0.0098
erase 4B, 8 42427 32 1.106 0.2157 | 1.074 0.4999 | 1.049
cAMP-specific) 11
SNP_
rs53833 A- 0.0171
6 42476 9 1.089 0.2219 1.073 0.5213 1.047
53
SNP_
rs17128 A- 0.0178 0.786
076 21165 7 3 0.7392 | 1.055 0.8574 | 1.026
43
SNP_
rs17417 A- 0.0194 0.0001
507 20848 5 0.838 0.8987 1.015 03 0.2986
32
SNP_
rs52477 A- 0.0216
0 42299 9 1.086 0.2179 1.073 0.4779 1.052
90
SNP_
rs64126 A- 0.0217
2 21536 5 1.084 0.2676 1.065 0.2009 | 0.8969

96




SNP_

rs28406 A- 0.0223 | 0.922 0.0537 0.0710
77 21884 3 7 T A 6 0.8971 4 0.8887
63
SNP_
rs44925 A- 0.0249 | 0.834 0.0628
86 42049 a 3 A G 0.2263 1.168 5 1.358
22
SNP_
rs55412 A-
0 84817 0.0262 1.12 A G 0.2638 | 1.066 0.899 | 0.9915
41
SNP_
rs55855 A- 0.0276 | 0.892
0 84623 3 4 T A 0.4183 | 0.9546 0.2979 | 0.9244
16
SNP_
rs57505 A- 0.0304
6 21278 4 1.081 C T 0.3073 1.06 0.4843 1.048
08
SNP_
rs54678 A- 0.0330
4 20227 5 1.078 A G 0.3249 1.057 0.2775 | 0.9145
41
SNP_
rs75376 A- 0.0332 | 0.816
87 87157 5 9 A G 0.045 1.233 0.6283 | 0.9355
28
SNP_
rs24550 A- 0.0381 | 0.845 0.0628
12 20001 2 7 T C 0.2236 1.17 ) 1.358
04
SNP_
rs66839 A- 0.0387
77 42721 5 1.077 C G 0.3352 1.057 0.4265 | 0.9178
30
SNP_
rs12137 A-
080 86836 0.0395 1.11 G A 0.2792 1.063 0.3399 | 0.9297
13
SNP_
rs12137 A- 0.0429
115 42833 1 1.081 C G 0.3556 1.054 0.3703 | 0.9292
48
SNP_
rs19374 A- 0.0472 | 0.904
43 84027 a 4 C G 0.4432 | 0.9576 0.9215 | 0.9933
10
SNP_
rs65044 A- 0.0079 | 0.809
28 84904 91 4 C T 0.1004 | 0.8667 0.9586 | 1.004
44
SNP_
rs46305 A- 0.0109
85 19559 6 0.816 G A 0.1004 | 0.8667 0.982 | 0.9984
64
SNP_
rs65044 A- 0.0133 | 0.793
PRKCQ 32 12878 7 ) NA NA NA NA 0.3984 | 1.061
(protein )8
kinase C,
alpha) SNP_
rs16959 A- 0.0155
714 22331 7 1.275 T C 0.3482 1.157 0.7047 | 0.9059
34
SNP_
rs44249 A- 0.0185 | 0.832
41 84629 1 5 A C 0.3288 1.074 0.6903 1.031
47
rs45022 SNP_ 0.0365 | 0.772 0.0519 0.0979
57 A- 1 7 A G 3 0.7578 5 0.7758

82884




18

SNP_
rs47910 A- 0.0409
22 22733 9 1.11 NA NA NA NA NA NA NA NA
74
SNP_
rs72150 A- 0.0420 | 0.893 0.0969
91 19422 4 7 T C 0.1681 | 1.118 C T S 0.8971
22
SNP_
rs17689 A- 0.0420
224 84393 5 1.128 A G 0.6702 | 1.029 A G 0.5825 | 0.9172
72
RAB18
(RAB18, rs12261 51?_ 0.0381
member RAS 690 19427 ; 1.287 NA NA NA NA G A 0.9386 | 1.008
oncogene
. 86
family)
SNP_
rs27118 A- 0.0136 | 0.885
65 20684 8 6 T G 0.8264 | 0.9844 NA NA NA NA
76
SNP_
rs27118 A- 0.0139 | 0.908
38 23114 9 1 A G 0.4811 1.045 A G 0.1583 1.097
13
SNP_
RELN rs25288 A- 0.0209 0.0126
(reelin) 64 21805 ) 0.908 G C 0.3664 | 1.062 C G 3 0.8493
42
SNP_
rs10953 A- 0.0215
394 17966 4 11 A T 0.6271 | 0.9684 A T 0.7369 | 0.9738
88
SNP_
rs22456 A- 0.0490
17 42435 7 1.087 T C 0.9913 | 1.001 T C 0.9107 | 0.9837
81
SNP_
rs46572 A- 0.0048
35 86794 35 1.254 A G 0.6014 | 1.049 A G 0.1017 | 1.119
57
SNP_
rs10157 A- 0.0160 | 0.812
628 42324 9 3 A G 0.3375 | 1.079 A G 0.4521 | 1.064
32
SNP_
rs12735 A- 0.0230
998 22480 4 1.097 T C 0.8436 | 1.013 C T 0.202 | 0.9199
74
SNP_
RGS4 rs12124 A- 0.0251 0.0082
1.137 A C 0.7652 1.019 C A 0.8014
(regulator of 253 84802 4 -
G-protein 60
signaling 4) SNP_
rs46572 A-
33 19502 0.027 1.144 C T 0.8706 | 0.9841 C T 0.5105 | 1.044
94
SNP_
rs46572 A- 0.0288 0.0262
37 18829 6 1.147 A G 0.8618 | 0.9826 G A 6 0.8647
15
SNP_
rs10917 A- 0.0335
632 84497 9 1.13 C T 0.5279 1.042 NA NA NA NA
73
rngGC;43 S'XI_)_ 0'09383 1.088 A G 0.7419 | 0.9785 A G 0.3883 | 1.066
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58
SNP_
rs95143 A- 0.0388 | 0.901
8 85790 3 2 T G 0.4148 1.047 T G 0.8919 | 0.9899
91
SNP_
rs37940 A- 0.0256
86 83493 5 1.123 T G 0.4893 | 1.041 T G 0.5055 | 0.9435
82
SNP
SLC1A2 -
(solute carrier rstﬁn 852'52 0'01285 112 c A | 03341 | 1058 c A | 06856 | 0.9603
family 1 (glial 31
high affinity NP
glutamate 17379 A -
transporter), | " y 0.04 | 1.109 A G 0.3795 | 1.051 A G 0.6182 | 0.9656
member 2) 710 85498
21
SNP_
rs73637 A- 0.0473
A 83814 5 1.108 A G 0.4063 | 1.05 A G 0.8783 | 0.9822
17
SNP_
rs60327 A- 0.0181 | 0.851
83 42940 5 3 G A 0.7874 | 0.9707 G A 0.3542 | 0.9328
89
SNP_
rs99491 A- 0.0204
9 83489 5 1.132 c T 0.6953 | 1.024 C T 0.9708 | 1.003
66
SNP_
SNAP25 “3i?58 45254 QOjOS &i45 T G | 04797 | 09144 T G | 06273 | 0.9602
(synaptosomal 04
-associated SNP
protein, rs36258 | A- 0.0367
25kD. - . . . . . .
a) 5 21230 p 0.85 T A 0.6495 | 0.9442 T A 0.9187 | 0.9918
88
SNP_
rs36257 A- 0.0411
4 83224 1 1.109 T G 0.4381 | 0.9569 T G 0.3798 | 1.062
74
SNP_
rs36256 A- 0.0434 | 0.834
3 20210 . ; NA NA NA NA c T 0.9058 | 0.9898
62
SNP_
rs29604 A- 0.0031 | 0.823
21 85668 s A G A 0.8224 | 1.017 G A 0.6613 | 0.9357
58
SNP_
rs37557 A- 0.0152 | 0.879
24 83460 5 4 A G 0.4188 | 1.049 A G 0.5086 | 0.9436
03
SNP_
SYN2 rs16746 A- 0.0233 | 0.923
(synapsin I1) 7 18190 5 4 G A 0.481 | 0.9611 A G 0.8328 | 1.014
97
SNP_
rs37733 A- 0.0279 | 0.856
64 84383 5 ; G A 0.858 | 0.986 G A 0.9998 1
64
SNP_
rs26002 A- 0.0459
7 85204 3 1.153 A G 0.1893 | 1.108 NA NA NA NA
12
SNP
TCF4 -
o rs17594 A- 0.0002 0.0103
(tr?:cstc;:p:;on it 42037 0z | 1517 A G 5 1.468 A G 0.5109 | 0.9291

22




SNP_

rs17594 A- 0.0004 0.0136
526 20435 067 1.446 9 1.448 A G 0.1981 | 0.8872
31
SNP_
rs41452 A- 0.0004
747 22999 3 1.315 0.5099 1.077 T C 0.2724 | 1.212
99
SNP_
rs11152 A- 0.0004 0.0194
369 21629 697 1.445 3 1.42 C A 0.2425 | 0.896
34
SNP_
rs96465 A- 0.0005 0.0236
96 20486 169 1.43 3 1.398 T c 0.2833 | 0.9037
94
SNP_
rs80994 A-
83 20251 0.0012 | 1.247 0.3669 1.102 T A 0.6148 1.047
91
SNP_
rs10401 A- 0.0013
120 22249 " 1.314 0.2482 1.159 A G 0.9987 | 0.9999
36
SNP_
rs17596 A- 0.0021 0.0396
267 42597 33 1.389 4 1.339 A T 0.904 1.021
35
SNP_
rs12326 A- 0.0026 | 0.888
693 20702 94 5 0.5733 | 0.9648 A G 0.8096 1.023
26
SNP_
rs41421 A- 0.0028 | 0.744 0.0989
645 22304 51 9 2 0.7845 A T 0.7371 1.032
21
SNP_
rs13772 A- 0.0051
42 21053 19 0.797 0.1339 | 0.809 T C 0.4646 | 0.8817
19
SNP_
rs12457 A- 0.0072 | 0.874
949 18439 08 3 0.6008 | 0.9612 C T 0.1694 | 0.8093
19
SNP_
rs17509 A- 0.0084 0.0189
991 42010 n 1.517 9 1.425 A G 0.2127 | 0.8887
17
SNP_
rs48009 A- 0.0114 | 0.892
33 42037 8 6 0.6522 | 0.9675 A G 0.4724 | 1.073
49
SNP_
rs99667 A- 0.0135 | 0.771
79 84529 3 3 0.4289 1.1 T c 0.4148 | 0.9021
97
SNP_
rs17594 A- 0.0148
358 84859 3 1.315 0.6296 1.06 C T 0.8525 | 0.9451
45
SNP_
rs10164 A- 0.0149 | 0.717
195 20414 3 4 0.3116 | 0.8538 NA NA NA NA
83
SNP_
rs80957 A- 0.0171
70 84711 6 1.279 0.5077 1.076 G A 0.4762 1.122
38
rs48010 SNP_ 0.0188 | 0.739
16 A- .8 '7 0.2203 | 0.8349 T A 0.2013 1.454

86004




72

SNP_
rs17533 A- 0.0209 | 0.886
219 85973 1 6 G T 0.5448 | 0.9653 G T 0.3693 | 0.9283
18
SNP_
rs17090 A- 0.0233 | 0.657
119 33180 9 3 C T 0.5891 | 1.114 C T 0.7612 | 1.052
01
SNP_
rs72410 A- 0.0400
77 82957 0.0239 | 1.133 A T 0.3288 | 1.063 A T 4 1.229
02
SNP_
rs46322 A-
06 84753 0.024 1.144 C A 0.1198 1.112 C A 0.6377 0.923
85
SNP_
rs25884 A- 0.0241 | 0.891
77 84943 3 7 C T 0.9424 | 0.9959 T C 0.2605 1.08
52
SNP_
rs99498 A- 0.0266 0.0307
21 18134 3 1.099 A G 3 1.158 A G 0.2368 | 0.8914
52
SNP_
rs41317 A- 0.0282 | 0.924
01 20056 1 6 A G 0.9159 | 0.9939 A G 0.621 | 0.9664
72
SNP_
rs18934 A- 0.0979
31 83727 0.0294 | 1.119 A G 0.7622 | 1.018 A G 3 1.125
48
SNP_
rs99656 A- 0.0295 | 0.925
25 21789 2 5 T C 0.912 0.9937 T C 0.5113 1.044
58
SNP_
rs11874 A- 0.0295 | 0.925
716 17935 6 1 C A 0.9832 | 1.001 C A 0.7756 | 0.9804
42
SNP_
rs12610 A- 0.0309 | 0.874
70 17926 4 ) T C 0.9271 | 0.9909 T c 0.8056 | 1.067
62
SNP_
rs39885 A- 0.0311 | 0.893 0.0777
4 83715 4 ) C T 0.6249 | 0.9717 C T 9 0.8473
61
SNP_
rs93198 A- 0.0318
30 33886 5 1.113 G C 0.6738 | 0.9766 G c 0.9604 | 1.003
07
SNP_
rs17089 A- 0.0343 | 0.813
226 42467 1 9 A G 0.2709 | 0.8809 A G 0.6209 1.05
85
SNP_
rs17511 A- 0.0411 0.0776
755 21792 5 1.195 C G 5 1.26 C G 0.3086 | 1.239
08
SNP_
TNIK rs26076 A 0.0013 | 0841 G A 0.8397 | 1.012 A G 0.5017 | 0.9553
9 85221 77 7
(TRAF2 and
41
NCK
interacting SNP_
X rs21310 A- 0.0016
ki
inase) 17 21056 02 1.204 NA NA NA NA NA NA NA NA

29




SNP_

rs13530 A- 0.0020 0.0324
20 19064 69 1.208 4 123 0.8972 | 0.9905
31
SNP_
rs48948 A- 0.0023 0.744
14 86258 33 5 0.3335 | 0.9059 0.3334 1.25
72
SNP_
rs36041 A- 0.0029 | 0.900
4 42957 29 2 0.2666 0.939 0.5234 1.043
09
SNP_
rs64449 A- 0.0068 0.0631
83 43005 1 1197 3 121 0.707 | 1.036
38
SNP_
rs11927 A- 0.0088
009 21889 4 1.105 0.7402 | 0.9815 0.62 1.035
64
SNP_
rs90295 A- 0.0100 0.0597
2 42479 9 1.205 8 1214 0.7736 | 0.9787
05
SNP_
rs48945 A- 0.0110
36 20092 2 0.913 0.4361 | 0.9562 0.9583 1.005
99
SNP_
rs98460 A- 0.0120 0.914
83 18696 4 2 0.4619 | 0.9586 0.8566 1.017
74
SNP_
rs24222 A- 0.0174
24 17873 5 1.173 0.0549 1.221 0.9877 1.001
02
SNP_
rs15655 A- 0.0176
67 20287 4 1.111 0.5691 1.038 0.6678 1.035
33
SNP_
rs76416 A- 0.0225 0.782
27 85973 6 2 0.2576 | 0.8687 0.9864 1.002
62
SNP_
rs98676 A- 0.0282 | 0.894
47 86756 3 7 0.356 1.054 0.383 0.944
78
SNP_
rs13530 A- 0.0296 0.0539
21 42255 9 1.087 0.2321 | 1.07 4 0.8196
15
SNP_
rs98449 A- 0.0306 0.908
25 18196 5 3 0.7607 | 0.9788 0.8893 | 0.9909
84
SNP_
rs18722 A- 0.0374 | 0.927 0.0156
9 18682 1 1 5 0.8681 0.8203 | 0.9839
51
SNP_
rs67881 | A- 0.0374 | 0.900 0.0812
98 42311 5 3 3 1152 0.1285 | 0.7973
93
SNP_
rs90295 A- 0.0383 0.929
3 19752 7 9 0.9753 | 0.9983 0.8616 | 0.9886
99
rs18171 SNP_ 0.0388 0.927 0.0105
5 A- 6 s = 0.861 0.8692 | 1.011

21575




58

SNP_

rs36045 A- 0.0397 | 0.895

7 21387 2 1 NA NA NA NA NA NA NA NA
82
SNP_

rs11916 A- 0.0404

004 17986 1 0.905 G A 0.6957 | 0.9725 A G 0.3759 | 0.9429
46
SNP_

rs98447 A- 0.0425 | 0.910

40 17876 4 2 T G 0.6553 1.033 T G 0.7011 | 0.9751

40




Table S4: An example of how Intra- Pathway Epistasis Testing (INPEP) Identifies Genes That May Work

Together. Inside the canonical pathway Glutamate Receptor Signaling, we tested for pairwise epistatic interactions between the best p-value SNPs
from the ISC GWAS (Table 1) in glutamate receptor genes in the pathway that are part of our list of top candidate genes, as a way of identifying and
prioritizing interactions. The top epistatic interactions are depicted in bold and underlined. As a caveat, the p-value was not corrected for multiple
comparisons. The corresponding genes merit future follow-up work to elucidate the biological and pathophysiological relevance of their interactions. In
particular, GRIA4 has suggestive evidence for interaction with 2 other genes (GRM7 and GRIN2B) in this pathway.

GRIN2A GRIN2B

GRIN2A

GRIN2B

0.06945
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